Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes

      , ,

      Nature Reviews Molecular Cell Biology

      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipids are distributed in a highly heterogeneous fashion in different cellular membranes. Only a minority of lipids achieve their final intracellular distribution through transport by vesicles. Instead, the bulk of lipid traffic is mediated by a large group of lipid transfer proteins (LTPs), which move small numbers of lipids at a time using hydrophobic cavities that stabilize lipid molecules outside membranes. Although the first LTPs were discovered almost 50 years ago, most progress in understanding these proteins has been made in the past few years, leading to considerable temporal and spatial refinement of our understanding of the function of these lipid transporters. The number of known LTPs has increased, with exciting discoveries of their multimeric assembly. Structural studies of LTPs have progressed from static crystal structures to dynamic structural approaches that show how conformational changes contribute to lipid handling at a sub-millisecond timescale. A major development has been the finding that many intracellular LTPs localize to two organelles at the same time, forming a shuttle, bridge or tube that links donor and acceptor compartments. The understanding of how different lipids achieve their final destination at the molecular level allows a better explanation of the range of defects that occur in diseases associated with lipid transport and distribution, opening up the possibility of developing therapies that specifically target lipid transfer.

          Related collections

          Most cited references 123

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane lipids: where they are and how they behave.

          Throughout the biological world, a 30 A hydrophobic film typically delimits the environments that serve as the margin between life and death for individual cells. Biochemical and biophysical findings have provided a detailed model of the composition and structure of membranes, which includes levels of dynamic organization both across the lipid bilayer (lipid asymmetry) and in the lateral dimension (lipid domains) of membranes. How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functionalities of their individual membranes?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Viral Reorganization of the Secretory Pathway Generates Distinct Organelles for RNA Replication

            Summary Many RNA viruses remodel intracellular membranes to generate specialized sites for RNA replication. How membranes are remodeled and what properties make them conducive for replication are unknown. Here we show how RNA viruses can manipulate multiple components of the cellular secretory pathway to generate organelles specialized for replication that are distinct in protein and lipid composition from the host cell. Specific viral proteins modulate effector recruitment by Arf1 GTPase and its guanine nucleotide exchange factor GBF1, promoting preferential recruitment of phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) to membranes over coat proteins, yielding uncoated phosphatidylinositol-4-phosphate (PI4P) lipid-enriched organelles. The PI4P-rich lipid microenvironment is essential for both enteroviral and flaviviral RNA replication; PI4KIIIβ inhibition interferes with this process; and enteroviral RNA polymerases specifically bind PI4P. These findings reveal how RNA viruses can selectively exploit specific elements of the host to form specialized organelles where cellular phosphoinositide lipids are key to regulating viral RNA replication. PaperFlick
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7–RILP–p150Glued and late endosome positioning

              Late endosomes (LEs) have characteristic intracellular distributions determined by their interactions with various motor proteins. Motor proteins associated to the dynactin subunit p150Glued bind to LEs via the Rab7 effector Rab7-interacting lysosomal protein (RILP) in association with the oxysterol-binding protein ORP1L. We found that cholesterol levels in LEs are sensed by ORP1L and are lower in peripheral vesicles. Under low cholesterol conditions, ORP1L conformation induces the formation of endoplasmic reticulum (ER)–LE membrane contact sites. At these sites, the ER protein VAP (VAMP [vesicle-associated membrane protein]-associated ER protein) can interact in trans with the Rab7–RILP complex to remove p150Glued and associated motors. LEs then move to the microtubule plus end. Under high cholesterol conditions, as in Niemann-Pick type C disease, this process is prevented, and LEs accumulate at the microtubule minus end as the result of dynein motor activity. These data explain how the ER and cholesterol control the association of LEs with motor proteins and their positioning in cells.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Molecular Cell Biology
                Nat Rev Mol Cell Biol
                Springer Nature America, Inc
                1471-0072
                1471-0080
                October 18 2018
                Article
                10.1038/s41580-018-0071-5
                30337668
                © 2018

                http://www.springer.com/tdm

                Comments

                Comment on this article