29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          New systems genetics approaches are needed to rapidly identify host genes and genetic networks that regulate complex disease outcomes. Using genetically diverse animals from incipient lines of the Collaborative Cross mouse panel, we demonstrate a greatly expanded range of phenotypes relative to classical mouse models of SARS-CoV infection including lung pathology, weight loss and viral titer. Genetic mapping revealed several loci contributing to differential disease responses, including an 8.5Mb locus associated with vascular cuffing on chromosome 3 that contained 23 genes and 13 noncoding RNAs. Integrating phenotypic and genetic data narrowed this region to a single gene, Trim55, an E3 ubiquitin ligase with a role in muscle fiber maintenance. Lung pathology and transcriptomic data from mice genetically deficient in Trim55 were used to validate its role in SARS-CoV-induced vascular cuffing and inflammation. These data establish the Collaborative Cross platform as a powerful genetic resource for uncovering genetic contributions of complex traits in microbial disease severity, inflammation and virus replication in models of outbred populations.

          Author Summary

          New emerging pathogens are a significant threat to human health with at least six highly pathogenic viruses, including four respiratory viruses, having spread from animal hosts into the human population within the past 15 years. With the emergence of new pathogens, new and better animal models are needed in order to better understand the disease these pathogens cause; to assist in the rapid development of therapeutics; and importantly to evaluate the role of natural host genetic variation in regulating disease outcome. We used incipient lines of the Collaborative Cross, a newly available recombinant inbred mouse panel, to identify polymorphic host genes that contribute to SARS-CoV pathogenesis. We discovered new animal models that better capture the range of disease found in human SARS patients and also found four novel susceptibility loci governing various aspects of SARS-induced pathogenesis. By integrating statistical, genetic and bioinformatic approaches we were able to narrow candidate genome regions to highly likely candidate genes. We narrowed one locus to a single candidate gene, Trim55, and confirmed its role in the inflammatory response to SARS-CoV infection through the use of knockout mice. This work identifies a novel function for Trim55 and also demonstrates the utility of the CC as a platform for identifying the genetic contributions of complex traits.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.

          A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats.

            Although the finding of severe acute respiratory syndrome coronavirus (SARS-CoV) in caged palm civets from live animal markets in China has provided evidence for interspecies transmission in the genesis of the SARS epidemic, subsequent studies suggested that the civet may have served only as an amplification host for SARS-CoV. In a surveillance study for CoV in noncaged animals from the wild areas of the Hong Kong Special Administration Region, we identified a CoV closely related to SARS-CoV (bat-SARS-CoV) from 23 (39%) of 59 anal swabs of wild Chinese horseshoe bats (Rhinolophus sinicus) by using RT-PCR. Sequencing and analysis of three bat-SARS-CoV genomes from samples collected at different dates showed that bat-SARS-CoV is closely related to SARS-CoV from humans and civets. Phylogenetic analysis showed that bat-SARS-CoV formed a distinct cluster with SARS-CoV as group 2b CoV, distantly related to known group 2 CoV. Most differences between the bat-SARS-CoV and SARS-CoV genomes were observed in the spike genes, ORF 3 and ORF 8, which are the regions where most variations also were observed between human and civet SARS-CoV genomes. In addition, the presence of a 29-bp insertion in ORF 8 of bat-SARS-CoV genome, not in most human SARS-CoV genomes, suggests that it has a common ancestor with civet SARS-CoV. Antibody against recombinant bat-SARS-CoV nucleocapsid protein was detected in 84% of Chinese horseshoe bats by using an enzyme immunoassay. Neutralizing antibody to human SARS-CoV also was detected in bats with lower viral loads. Precautions should be exercised in the handling of these animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coronavirus as a possible cause of severe acute respiratory syndrome.

              An outbreak of severe acute respiratory syndrome (SARS) has been reported in Hong Kong. We investigated the viral cause and clinical presentation among 50 patients. We analysed case notes and microbiological findings for 50 patients with SARS, representing more than five separate epidemiologically linked transmission clusters. We defined the clinical presentation and risk factors associated with severe disease and investigated the causal agents by chest radiography and laboratory testing of nasopharyngeal aspirates and sera samples. We compared the laboratory findings with those submitted for microbiological investigation of other diseases from patients whose identity was masked. Patients' age ranged from 23 to 74 years. Fever, chills, myalgia, and cough were the most frequent complaints. When compared with chest radiographic changes, respiratory symptoms and auscultatory findings were disproportionally mild. Patients who were household contacts of other infected people and had older age, lymphopenia, and liver dysfunction were associated with severe disease. A virus belonging to the family Coronaviridae was isolated from two patients. By use of serological and reverse-transcriptase PCR specific for this virus, 45 of 50 patients with SARS, but no controls, had evidence of infection with this virus. A coronavirus was isolated from patients with SARS that might be the primary agent associated with this disease. Serological and molecular tests specific for the virus permitted a definitive laboratory diagnosis to be made and allowed further investigation to define whether other cofactors play a part in disease progression.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                9 October 2015
                October 2015
                : 11
                : 10
                : e1005504
                Affiliations
                [1 ]Department of Epidemiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
                [2 ]Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
                [3 ]Department of Microbiology, University of Washington, Seattle, Washington, United States of America
                [4 ]Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
                [5 ]The Jackson Laboratory, Bar Harbor, Maine, United States of America
                [6 ]Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
                [7 ]Department of Computer Science, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
                Institut Pasteur; URA CNRS 2578, FRANCE
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LEG MTF DLA GAC DWT MGK MTH FPMdV RSB. Performed the experiments: LEG MTF ACW RG MBF DD RJB TAB. Analyzed the data: LEG MTF DLA ACW RG LM WV. Contributed reagents/materials/analysis tools: DRM GAC LM WV FPMdV. Wrote the paper: LEG MTF VDM GAC RSB.

                [¤a]

                Current address: Department of Biological Sciences, NC State University, Raleigh, North Carolina, United States of America,

                [¤b]

                Current address: Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America

                [¤c]

                Current address: Federal Drug Administration, Silver Spring, Maryland, United States of America

                Article
                PGENETICS-D-15-00734
                10.1371/journal.pgen.1005504
                4599853
                26452100
                41a94c1b-73bd-4ccf-9eff-a8be55bad52e

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication

                History
                : 24 March 2015
                : 15 August 2015
                Page count
                Figures: 6, Tables: 1, Pages: 21
                Funding
                This work was supported by funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health U19 AI100625 (RSB and MTH) and U54AI081680 (RSB, MTH and MK), as well as the National Cancer Institute, National Institutes of Health U01CA134240 (DT and FPMV). Essential support for access to the pre-CC mice was provided by the Dean of the UNC School of Medicine, the Lineberger Comprehensive Cancer Center at UNC, and the University Cancer Research Fund from the state of North Carolina. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                Most relevant data are within the paper and its Supporting Information files. Microarray data are available at the National Center for Biotechnology Information’s Gene Expression Omnibus database and are accessible through GEO accession SE64660. Genotyping data have been posted to the CC Status website at http://csbio.unc.edu/CCstatus/index.py?run=pubs.

                Genetics
                Genetics

                Comments

                Comment on this article