10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the Dimension and Euler characteristic of random graphs

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The inductive dimension dim(G) of a finite undirected graph G=(V,E) is a rational number defined inductively as 1 plus the arithmetic mean of the dimensions of the unit spheres dim(S(x)) at vertices x primed by the requirement that the empty graph has dimension -1. We look at the distribution of the random variable "dim" on the Erdos-Renyi probability space G(n,p), where each of the n(n-1)/2 edges appears independently with probability p. We show here that the average dimension E[dim] is a computable polynomial of degree n(n-1)/2 in p. The explicit formulas allow experimentally to explore limiting laws for the dimension of large graphs. We also study the expectation E[X] of the Euler characteristic X, considered as a random variable on G(n,p). We look experimentally at the statistics of curvature K(v) and local dimension dim(v) = 1+dim(S(v)) which satisfy the Gauss-Bonnet formula X(G) = sum K(v) and by definition dim(G) = sum dim(v)/|V|. We also look at the signature functions f(p)=E[dim], g(p)=E[X] and matrix values functions A(p) = Cov[{dim(v),dim(w)], B(p) = Cov[K(v),K(w)] on the probability space G(p) of all subgraphs of a host graph G=(V,E) with the same vertex set V, where each edge is turned on with probability p. If G is the complete graph or a union of cyclic graphs with have explicit formulas for the signature polynomials f and g.

          Related collections

          Author and article information

          Journal
          24 December 2011
          Article
          1112.5749
          41b09168-d024-45df-8399-a637fae704a5

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          05C80, 05C82, 05C10, 90B15, 57M15
          18 pages, 14 figures, 4 tables
          math.PR cs.CG cs.DM cs.NI math.CO

          Comments

          Comment on this article