22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neurofilaments and Orthograde Transport Are Reduced in Ventral Root Axons of Transgenic Mice that Express Human SOD1 with a G93A Mutation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mice engineered to express a transgene encoding a human Cu/Zn superoxide dismutase ( SOD1) with a Gly 93 → Ala (G93A) mutation found in patients who succumb to familial amyotrophic lateral sclerosis (FALS) develop a rapidly progressive and fatal motor neuron disease (MND) similar to amyotrophic lateral sclerosis (ALS). Hallmark ALS lesions such as fragmentation of the Golgi apparatus and neurofilament (NF)-rich inclusions in surviving spinal cord motor neurons as well as the selective degeneration of this population of neurons were also observed in these animals. Since the mechanism whereby mutations in SOD1 lead to MND remains enigmatic, we asked whether NF inclusions in motor neurons compromise axonal transport during the onset and progression of MND in a line of mice that contained ∼30% fewer copies of the transgene than the original G93A ( Gurney et al., 1994). The onset of MND was delayed in these mice compared to the original G93A mice, but they developed the same neuropathologic abnormalities seen in the original G93A mice, albeit at a later time point with fewer vacuoles and more NF inclusions. Quantitative Western blot analyses showed a progressive decrease in the level of NF proteins in the L5 ventral roots of G93A mice and a concomitant reduction in axon caliber with the onset of motor weakness. By ∼200 d, both fast and slow axonal transports were impaired in the ventral roots of these mice coincidental with the appearance of NF inclusions and vacuoles in the axons and perikarya of vulnerable motor neurons. This is the first demonstration of impaired axonal transport in a mouse model of ALS, and we infer that similar impairments occur in authentic ALS. Based on the temporal correlation of these impairments with the onset of motor weakness and the appearance of NF inclusions and vacuoles in vulnerable motor neurons, the latter lesions may be the proximal cause of motor neuron dysfunction and degeneration in the G93A mice and in FALS patients with SOD1 mutations.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.

          Mutations of human Cu,Zn superoxide dismutase (SOD) are found in about 20 percent of patients with familial amyotrophic lateral sclerosis (ALS). Expression of high levels of human SOD containing a substitution of glycine to alanine at position 93--a change that has little effect on enzyme activity--caused motor neuron disease in transgenic mice. The mice became paralyzed in one or more limbs as a result of motor neuron loss from the spinal cord and died by 5 to 6 months of age. The results show that dominant, gain-of-function mutations in SOD contribute to the pathogenesis of familial ALS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions.

            High levels of familial Amyotrophic Lateral Sclerosis (ALS)-linked SOD1 mutants G93A and G37R were previously shown to mediate disease in mice through an acquired toxic property. We report here that even low levels of another mutant, G85R, cause motor neuron disease characterized by an extremely rapid clinical progression, without changes in SOD1 activity. Initial indicators of disease are astrocytic inclusions that stain intensely with SOD1 antibodies and ubiquitin and SOD1-containing aggregates in motor neurons, features common with some cases of SOD1 mutant-mediated ALS. Astrocytic inclusions escalate markedly as disease progresses, concomitant with a decrease in the glial glutamate transporter (GLT-1). Thus, the G85R SOD1 mutant mediates direct damage to astrocytes, which may promote the nearly synchronous degeneration of motor neurons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells.

              Studies in Trembler and control mice demonstrated that myelinating Schwann cells exert a profound influence on axons. Extensive contacts between myelin and axons have been considered structural. However, demyelination decreases neurofilament phosphorylation, slow axonal transport, and axonal diameter, as well as significantly increasing neurofilament density. In control sciatic nerves with grafted Trembler nerve segments, these changes were spatially restricted: they were confined to axon segments without normal myelination. Adjacent regions of the same axons had normal diameters, neurofilament phosphorylation, cytoskeletal organization, and axonal transport rates. Close intercellular contacts between myelinating Schwann cells and axons modulate a kinase-phosphatase system acting on neurofilaments and possibly other substrates. Myelination by Schwann cells sculpts the axon-altering functional architecture, electrical properties, and neuronal morphologies.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                1 December 1997
                : 139
                : 5
                : 1307-1315
                Affiliations
                The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
                Article
                10.1083/jcb.139.5.1307
                2140205
                9382875
                41b10def-50dd-468e-a304-54b974975786
                Copyright @ 1997
                History
                : 14 August 1997
                : 22 September 1997
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article