34
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Ischemic Preconditioning Attenuates Renal Ischemia-Reperfusion Injury by Inhibiting Activation of IKKβ and Inflammatory Response

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Renal ischemia-reperfusion (I/R) injury is a major cause of acute renal failure (ARF). The transcription factor nuclear factor-κB (NF-κB) has been implicated as a key mediator of reperfusion injury. Activation of NF-κB is dependent upon the phosphorylation of its inhibitor, IκB, by the specific inhibitory κB kinase (IKK) subunit, IKKβ. We hypothesized that ischemic preconditioning (IPC) reduces acute renal damage following I/R injury by inhibiting activation of IKKβ. As neutrophil gelatinase-associated lipocalin (NGAL), an early predictive biomarker of acute kidney injury, is regulated by NF-κB, we approached the relationship between NGAL and IKKβ. Method: Thirty male Sprague-Dawley rats were randomly divided into 3 groups after right kidney nephrectomy. Group A rats were sham-operated controls. Group B rats were 45-min ischemic in the left renal artery while Group C rats were pre-treated with 3 cycles of 2-min ischemia and 5-min reperfusion. All the rats were sacrificed at 24 h after reperfusion. We harvested kidneys and serum to do further analysis, including histological and functional parameters, expressions of NGAL and IKKβ in renal tissues. Results: Compared with rats subjected to I/R injury, pre-treated rats had a significant decrease in serum creatinine level (Scr) and tubulointerstitial injury scores (Scr, 86.79 ± 12.98 vs. 205.89 ± 19.16 μmol/l, p < 0.01; tubulointerstitial injury scores, 1.3 ± 0.48 vs. 3.8 ± 0.79, p < 0.01). In addition, expressions of IKKβ (0.95 ± 0.21 vs. 1.74 ± 0.17, p < 0.05) and NGAL (1.71 ± 0.032 vs. 2.66 ± 0.078, p < 0.05) at renal tubule in pre-treated rats were attenuated significantly compared with rats subjected to ischemia-reperfusion injury. Moreover, our study showed that IKKβ and NGAL were in positive correlation (R = 0.965 > R<sub>0.01</sub>(30) = 0.448, p < 0.01). Conclusions: The evidence suggests that IKKβ may play a role in renal I/R injury and give rise to the generation of NGAL. It appears that IPC may attenuate renal injury and the expression of NGAL following acute I/R injury. IKKβ may offer a clinically accessible target for preventing renal injury following I/R.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Series introduction: the transcription factor NF-kappaB and human disease.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin.

            Acute renal failure secondary to ischemic injury remains a common problem, with limited and unsatisfactory therapeutic options. Neutrophil gelatinase-associated lipocalin (NGAL) was recently shown to be one of the maximally induced genes early in the postischemic kidney. In this study, the role of NGAL in ischemic renal injury was explored. Intravenous administration of purified recombinant NGAL in mice resulted in a rapid uptake of the protein predominantly by proximal tubule cells. In an established murine model of renal ischemia-reperfusion injury, intravenous NGAL administered before, during, or after ischemia resulted in marked amelioration of the morphologic and functional consequences, as evidenced by a significant decrease in the histopathologic damage to tubules and in serum creatinine measurements. NGAL-treated animals also displayed a reduction in the number of apoptotic tubule cells and an increase in proliferating proximal tubule cells after ischemic injury. The results indicate that NGAL may represent a novel therapeutic intervention in ischemic acute renal failure, based at least in part on its ability to tilt the balance of tubule cell fate toward survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Neutrophil Gelatinase-Associated Lipocalin: A Novel Early Urinary Biomarker for Cisplatin Nephrotoxicity

              Background: Cisplatin is one of the most widely used chemotherapeutic agents, but the risk of nephrotoxicity frequently hinders the use of higher doses to maximize its antineoplastic effects. The lack of early biomarkers has impaired our ability to initiate potential therapeutic or preventive interventions in cisplatin nephrotoxicity in a timely manner. In this study, we have explored the expression and urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in a mouse model of cisplatin-induced nephrotoxic injury. Methods: Mice were subjected to intraperitoneal injections of 20 mg/kg (high dose) or 5 mg/kg (low dose) cisplatin. The expression of NGAL was measured in the kidney and urine by Western analysis and immunofluorescence, and compared to changes in serum creatinine and urinary N-acetyl-β- D -glucosaminidase (NAG). Results: Cisplatin resulted in tubule cell necrosis and apoptosis following the high dose, but not the low dose. By Western analysis, NGAL protein was rapidly induced in the kidney within 3 h of high-dose cisplatin. By immunofluorescence, NGAL was induced predominantly in proximal tubule cells in a punctate cytoplasmic distribution, reminiscent of a secreted protein. NGAL was easily detected in the urine by Western analysis within 3 h of cisplatin administration in a dose- and duration-dependent manner. By comparison, changes in urinary NAG or serum creatinine were not evident until 96 h after cisplatin. Using defined concentrations of purified recombinant NGAL, urinary NGAL excretion following cisplatin administration was quantified to be in the 20–80 ng/ml range. Conclusion: The results indicate that NGAL represents an early and quantitative urinary biomarker for cisplatin nephrotoxicity.
                Bookmark

                Author and article information

                Journal
                AJN
                Am J Nephrol
                10.1159/issn.0250-8095
                American Journal of Nephrology
                S. Karger AG
                0250-8095
                1421-9670
                2009
                September 2009
                16 June 2009
                : 30
                : 3
                : 287-294
                Affiliations
                aDepartment of Nephrology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, and bDepartment of Chest Surgery, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
                Article
                225928 Am J Nephrol 2009;30:287–294
                10.1159/000225928
                19546526
                41c656f3-e886-4305-b95b-67da8dfe81b0
                © 2009 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 28 February 2009
                : 18 May 2009
                Page count
                Figures: 7, Tables: 1, References: 36, Pages: 8
                Categories
                Original Report: Laboratory Investigation

                Cardiovascular Medicine,Nephrology
                Ischemia preconditioning,I kappaB kinaseβ (IKKβ),Acute kidney ischemia,Neutrophil gelatinase-associated lipocalin (NGAL)

                Comments

                Comment on this article