11
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      mTOR inhibitor improves testosterone-induced myocardial hypertrophy in hypertensive rats

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Compelling evidence has described that the incidence of hypertension and left ventricular hypertrophy (LVH) in postmenopausal women is significantly increased worldwide. Our team’s previous research identified that androgen was an underlying factor contributing to increased blood pressure and LVH in postmenopausal women. However, little is known about how androgens affect LVH in postmenopausal hypertensive women. The purpose of this study was to evaluate the role of mammalian rapamycin receptor (mTOR) signaling pathway in myocardial hypertrophy in androgen-induced postmenopausal hypertension and whether mTOR inhibitors can protect the myocardium from androgen-induced interference to prevent and treat cardiac hypertrophy. For that, ovariectomized (OVX) spontaneously hypertensive rats (SHR) aged 12 weeks were used to study the effects of testosterone (T 2.85 mg/kg/weekly i.m.) on blood pressure and myocardial tissue. On the basis of antihypertensive therapy (chlorthalidone 8 mg/kg/day ig), the improvement of blood pressure and myocardial hypertrophy in rats treated with different dose gradients of rapamycin (0.8 mg/kg/day vs 1.5 mg/kg/day vs 2 mg/kg/day i.p.) in OVX + estrogen (E 9.6 mg/kg/day, ig) + testosterone group was further evaluated. After testosterone intervention, the OVX female rats exhibited significant increments in the heart weight/tibial length (TL), area of cardiomyocytes and the mRNA expressions of ANP, β-myosin heavy chain and matrix metalloproteinase 9 accompanied by a significant reduction in the uterine weight/TL and tissue inhibitor of metalloproteinase 1. mTOR, ribosomal protein S6 kinase (S6K1), 4E-binding protein 1 (4EBP1) and eukaryotic translation initiation factor 4E in myocardial tissue of OVX + estrogen + testosterone group were expressed at higher levels than those of the other four groups. On the other hand, rapamycin abolished the effects of testosterone-induced cardiac hypertrophy, decreased the systolic and diastolic blood pressure of SHR, and inhibited the activation of mTOR/S6K1/4EBP1 signaling pathway in a concentration-dependent manner. Collectively, these data suggest that the mTOR/S6K1/4EBP1 pathway is an important therapeutic target for the prevention of LVH in postmenopausal hypertensive female rats with high testosterone levels. Our findings also support the standpoint that the mTOR inhibitor, rapamycin, can eliminate testosterone-induced cardiomyocyte hypertrophy.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          mTOR at the nexus of nutrition, growth, ageing and disease

          The mTOR pathway integrates a diverse set of environmental cues, such as growth factor signals and nutritional status, to direct eukaryotic cell growth. Over the past two and a half decades, mapping of the mTOR signalling landscape has revealed that mTOR controls biomass accumulation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Given the pathway’s central role in maintaining cellular and physiological homeostasis, dysregulation of mTOR signalling has been implicated in metabolic disorders, neurodegeneration, cancer and ageing. In this Review, we highlight recent advances in our understanding of the complex regulation of the mTOR pathway and discuss its function in the context of physiology, human disease and pharmacological intervention.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases

            Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
              • Record: found
              • Abstract: not found
              • Article: not found

              Association of Age of Onset of Hypertension With Cardiovascular Diseases and Mortality

                Author and article information

                Journal
                J Endocrinol
                J Endocrinol
                JOE
                The Journal of Endocrinology
                Bioscientifica Ltd (Bristol )
                0022-0795
                1479-6805
                06 December 2021
                01 March 2022
                : 252
                : 3
                : 179-193
                Affiliations
                [1 ]Lanzhou University Second College of Clinical Medicine , Lanzhou, China
                [2 ]Department of Cardiology , Lanzhou University Second Hospital, Lanzhou, China
                Author notes
                Correspondence should be addressed to J Yu: ery_jyu@ 123456lzu.edu.cn
                Article
                JOE-21-0284
                10.1530/JOE-21-0284
                8859925
                34874016
                41cfbcea-55ae-4423-bdee-f1eb4e4b2598
                © The authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 15 November 2021
                : 06 December 2021
                Categories
                Research

                Endocrinology & Diabetes
                postmenopausal,blood pressure,myocardial hypertrophy,androgen,mtor inhibitor

                Comments

                Comment on this article

                Related Documents Log