12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fast high resolution whole brain T2* weighted imaging using echo planar imaging at 7T

      , , ,
      NeuroImage
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Magnetic susceptibility based (T(2)* weighted) contrast in MRI at high magnetic field strength is of great value in research on brain structure and cortical architecture, but its use is hampered by the low signal-to-noise ratio (SNR) efficiency of the conventional spoiled gradient echo sequence (GRE) leading to long scan times even for a limited number of slices. In this work, we show that high resolution (0.5mm isotropic) T(2)* weighted images of the whole brain can be obtained in 6min by utilizing the high SNR efficiency of echo-planar imaging (EPI). A volumetric (3D) EPI protocol is presented and compared to conventional 3D GRE images acquired with the same resolution, amount of T(2)* weighting, and imaging duration. Spatial coverage in 3D EPI was increased by a factor of 4.5 compared to 3D GRE, while also the SNR was increased by a factor of 2. Image contrast for both magnitude and phase between gray and white matter was similar for both sequences, with enhanced conspicuity of anatomic details in the 3D EPI images due to the increased SNR. Even at 7T, image blurring and distortion is limited if the EPI train length remains short (not longer than the T(2)* of the imaged tissue). 3D EPI provides steps (speed, whole brain coverage, and high isotropic resolution) that are necessary to utilize the benefits of high field MRI in research that employs T(2)* weighted imaging. Copyright © 2011 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Journal
          NeuroImage
          NeuroImage
          Elsevier BV
          10538119
          June 2011
          June 2011
          : 56
          : 4
          : 1902-1907
          Article
          10.1016/j.neuroimage.2011.03.046
          21440070
          41d0d172-081a-4130-a90a-aad6a9a863d4
          © 2011

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article