8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Freeboard, snow depth and sea-ice roughness in East Antarctica from in situ and multiple satellite data

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In October 2003 a campaign on board the Australian icebreaker Aurora Australis had the objective to validate standard Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. Additionally, the satellite laser altimeter on the Ice, Cloud and land Elevation Satellite (ICESat) was in operation. To capture the large-scale information on the sea-ice conditions necessary for satellite validation, the measurement strategy was to obtain large-scale sea-ice statistics using extensive sea-ice measurements in a Lagrangian approach. A drifting buoy array, spanning initially 50 km × 100 km, was surveyed during the campaign. In situ measurements consisted of 12 transects, 50–500 m, with detailed snow and ice measurements as well as random snow depth sampling of floes within the buoy array using helicopters. In order to increase the amount of coincident in situ and satellite data an approach has been developed to extrapolate measurements in time and in space. Assuming no change in snow depth and freeboard occurred during the period of the campaign on the floes surveyed, we use buoy ice-drift information as well as daily estimates of thin-ice fraction and rough-ice vs smooth-ice fractions from AMSR-E and QuikSCAT, respectively, to estimate kilometer-scale snow depth and freeboard for other days. the results show that ICESat freeboard estimates have a mean difference of 1.8 cm when compared with the in situ data and a correlation coefficient of 0.6. Furthermore, incorporating ICESat roughness information into the AMSR-E snow depth algorithm significantly improves snow depth retrievals. Snow depth retrievals using a combination of AMSR-E and ICESat data agree with in situ data with a mean difference of 2.3 cm and a correlation coefficient of 0.84 with a negligible bias.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          High interannual variability of sea ice thickness in the Arctic region

          Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Sea ice concentration, ice temperature, and snow depth using AMSR-E data

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Estimation of Thin Ice Thickness and Detection of Fast Ice from SSM/I Data in the Antarctic Ocean

                Bookmark

                Author and article information

                Journal
                applab
                Annals of Glaciology
                Ann. Glaciol.
                Cambridge University Press (CUP)
                0260-3055
                1727-5644
                2011
                September 2017
                : 52
                : 57
                : 242-248
                Article
                10.3189/172756411795931570
                41d84fb5-3c67-4b8b-8f32-60c996095b55
                © 2011
                History

                Comments

                Comment on this article