57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios.

      Journal of biomedical materials research
      Animals, Biodegradation, Environmental, Dental Implantation, Dental Implantation, Endosseous, Half-Life, Lactates, Polyglycolic Acid, Polymers, Rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study determined the difference in rate of degradation between pure polymers of lactic acid (pla), glycolic acid (PGA), and various ratios of copolymers of these two substances. Fast-cured and slow-cured polyglycolide was compared with copolymers of glycolide/lactide intermixed in ratios of 75:25, 50:50, and 25:75, as well as pure polylactide. A total of 420 rats were implanted with carbon-14 and tritium-labeled polymers in bone and soft tissue. At intervals of 1, 2, 3, 5, 7, 9, and 11 months, groups of five animals with the implants in bone and five with the implants in the abdominal wall were sacrificed. The implant area as well as tissue from the liver, spleen, kidney, lung and some muscle tissue was analyzed for radioactivity along with the urine and feces collected throughout the experiment. Half-lives of the different polymers and copolymers were calculated from the radioactivity present in the implant area for each time interval. Half-life of the polymers and copolymers decreased from 5 months for 100% PGA to 1 week with 50:50 PGA:PLA copolymer and rapidly increased to 6.1 months for 100% PLA. Fast-cured PGA had a half-life in tissue of 0.85 months. No difference in rate of degradation was seen in soft tissue or bone. No significant radioactivity was detected in urine, feces, or tissue samples. From this study, it is concluded that control of degradation rate of the implant could best be attained by varying the composition of PLA and PGA between 75% and 100% PLA along with a corresponding 25% to 0% PGA. This would provide a half-life range of the implant of from 2 weeks to 6 months.

          Related collections

          Author and article information

          Journal
          893490
          10.1002/jbm.820110507

          Chemistry
          Animals,Biodegradation, Environmental,Dental Implantation,Dental Implantation, Endosseous,Half-Life,Lactates,Polyglycolic Acid,Polymers,Rats

          Comments

          Comment on this article