Blog
About

131
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Iron is a micronutrient essential for cellular energy and metabolism, necessary for maintaining body homoeostasis. Iron deficiency is an important co-morbidity in patients with heart failure (HF). A major factor in the pathogenesis of anaemia, it is also a separate condition with serious clinical consequences (e.g. impaired exercise capacity) and poor prognosis in HF patients. Experimental evidence suggests that iron therapy in iron-deficient animals may activate molecular pathways that can be cardio-protective. Clinical studies have demonstrated favourable effects of i.v. iron on the functional status, quality of life, and exercise capacity in HF patients. It is hypothesized that i.v. iron supplementation may become a novel therapy in HF patients with iron deficiency.

          Related collections

          Most cited references 127

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Regulation of cellular iron metabolism

          Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Iron biology in immune function, muscle metabolism and neuronal functioning.

             Daniel Beard (2001)
            The estimated prevalence of iron deficiency in the world suggests that there should be widespread negative consequences of this nutrient deficiency in both developed and developing countries. In considering the reality of these estimates, the Belmont Conference seeks to reconsider the accepted relationships of iron status to physiological, biochemical and neurological outcomes. This review focuses on the biological processes that we believe are the basis for alterations in the immune system, neural systems, and energy metabolism and exercise. The strength of evidence is considered in each of the domains and the large gaps in knowledge of basic biology or iron-dependent processes are identified. Iron is both an essential nutrient and a potential toxicant to cells; it requires a highly sophisticated and complex set of regulatory approaches to meet the demands of cells as well as prevent excess accumulation. It is hoped that this review of the more basic aspects of the biology of iron will set the stage for subsequent in-depth reviews of the relationship of iron to morbidity, mortality and functioning of iron-deficient individuals and populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases

               Douglas Kell (2009)
              Background The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. Review We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles. Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. Conclusion Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
                Bookmark

                Author and article information

                Journal
                Eur Heart J
                Eur. Heart J
                eurheartj
                ehj
                European Heart Journal
                Oxford University Press
                0195-668X
                1522-9645
                14 March 2013
                25 October 2012
                25 October 2012
                : 34
                : 11
                : 816-829
                Affiliations
                [1 ]Department of Heart Diseases, Wroclaw Medical University , ul. Weigla 5, 50-981 Wroclaw, Poland
                [2 ]Centre for Heart Diseases, Military Hospital , Wroclaw, Poland
                [3 ]Division of Applied Cachexia Research, Department of Cardiology, Charité Medical School , Berlin, Germany
                [4 ]Centre for Clinical and Basic Research, IRCCS San Raffaele , Rome, Italy
                [5 ]Department of Renal Medicine, King's College Hospital , London, UK
                Author notes
                [* ]Corresponding author. Tel:+48 608553169, Fax: +48 717660250, Email: ewa.jankowska@ 123456am.wroc.pl
                Article
                ehs224
                10.1093/eurheartj/ehs224
                3596759
                23100285
                © The Author 2012. Published by Oxford University Press on behalf of European Society of Cardiology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided that the original authorship is properly and fully attributed; the Journal, Learned Society and Oxford University Press are attributed as the original place of publication with correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oup.com.

                Product
                Categories
                Review

                Comments

                Comment on this article

                Similar content 79

                Cited by 71

                Most referenced authors 1,662