1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduced-particle size wheat bran and endoxylanase supplementation in broiler feed affect arabinoxylan hydrolysis and fermentation with broiler age differently

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the caecal microbiota of young broilers are not yet able to ferment the dietary fibre (DF) fraction of the feed to a large extent, increasing the accessibility of DF substrates along the gastrointestinal tract is crucial to benefit from the health stimulating metabolic end-products (e.g. butyric acid) generated upon microbial DF fermentation. Therefore, the present study aimed to evaluate the potential of reduced-particle size wheat bran (RPS-WB) and endoxylanases as feed additives to stimulate arabinoxylan (AX) hydrolysis and fermentation along the hindgut of young broilers. To this end, RPS-WB and endoxylanase supplementation were evaluated in a 2 × 2 factorial design using a total of 256 male 1-d-old chicks (Ross 308). Broilers were assigned to 4 dietary treatments: a basal wheat-based diet with (1) no feed additives (control, CTRL), (2) an endoxylanase (XYL; Econase XT 25 at 0.10 g/kg diet), (3) 1% wheat bran with an average reduced particle size of 297 μm (RPS-WB) and (4) an endoxylanase and 1% RPS-WB (RPS-WB + XYL). Each dietary treatment was replicated 8 times and on d 10 and 28, respectively, 24 and 16 broilers per treatment group were euthanised to analyse AX degradation, short-chain fatty acid production and digesta viscosity in the ileum and caecum. Broilers receiving XYL in their diet showed increased AX solubilisation and fermentation at both d 10 and 28 compared to the CTRL group ( P < 0.05). Adding RPS-WB to the diet stimulated wheat AX utilisation by the primary AX degraders in the caecum at 10 d of age compared to the CTRL group, as observed by the high AX digestibility coefficient for the RPS-WB supplemented group at this young age ( P < 0.05). At 28 d, RPS-WB supplementation lowered body-weight gains but increased butyric acid concentrations compared to the XYL and CTRL group ( P < 0.05). Although no synergistic effect for RPS-WB + XYL broilers was observed for AX hydrolysis and fermentation, these findings suggest that both additives can raise a dual benefit to the broiler as a butyrogenic effect and improved AX fermentation along the ileum and caecum were observed throughout the broiler's life.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics

          With the continued interest in the role of the gut microbiota in health, attention has now turned to how to harness the microbiota for the benefit of the host. This Consensus Statement outlines the definition and scope of the term 'prebiotic' as determined by an expert panel convened by the International Scientific Association for Probiotics and Prebiotics in December 2016.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Food animals and antimicrobials: impacts on human health.

            Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the "precautionary principle." Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans-directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From the gut to the peripheral tissues: the multiple effects of butyrate.

              Butyrate is a natural substance present in biological liquids and tissues. The present paper aims to give an update on the biological role of butyrate in mammals, when it is naturally produced by the gastrointestinal microbiota or orally ingested as a feed additive. Recent data concerning butyrate production delivery as well as absorption by the colonocytes are reported. Butyrate cannot be detected in the peripheral blood, which indicates fast metabolism in the gut wall and/or in the liver. In physiological conditions, the increase in performance in animals could be explained by the increased nutrient digestibility, the stimulation of the digestive enzyme secretions, a modification of intestinal luminal microbiota and an improvement of the epithelial integrity and defence systems. In the digestive tract, butyrate can act directly (upper gastrointestinal tract or hindgut) or indirectly (small intestine) on tissue development and repair. Direct trophic effects have been demonstrated mainly by cell proliferation studies, indicating a faster renewal of necrotic areas. Indirect actions of butyrate are believed to involve the hormono-neuro-immuno system. Butyrate has also been implicated in down-regulation of bacteria virulence, both by direct effects on virulence gene expression and by acting on cell proliferation of the host cells. In animal production, butyrate is a helpful feed additive, especially when ingested soon after birth, as it enhances performance and controls gut health disorders caused by bacterial pathogens. Such effects could be considered for new applications in human nutrition.
                Bookmark

                Author and article information

                Contributors
                Journal
                Anim Nutr
                Anim Nutr
                Animal Nutrition
                KeAi Publishing
                2405-6545
                2405-6383
                23 November 2022
                March 2023
                23 November 2022
                : 12
                : 308-320
                Affiliations
                [a ]Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (M 2S), KU Leuven, Leuven, 3001, Belgium
                [b ]AB Vista, Marlborough, Wiltshire SN8 4AN, United Kingdom
                [c ]Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
                Author notes
                []Corresponding author. an.bautil@ 123456kuleuven.be
                Article
                S2405-6545(22)00163-9
                10.1016/j.aninu.2022.11.003
                9874015
                36733780
                41fad007-b2a9-4af4-ba88-40b215922e58
                © 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 15 June 2022
                : 12 September 2022
                : 11 November 2022
                Categories
                Original Research Article

                broiler chicken,wheat bran,particle size reduction,xylanase,arabinoxylan fermentation

                Comments

                Comment on this article