9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An In Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2-Graphene 2D Sandwich-Like Hybrid Nanosheets: Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2into Methane and Ethane

      , , , , , , ,
      Advanced Functional Materials
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          P25-graphene composite as a high performance photocatalyst.

          Herein we obtained a chemically bonded TiO(2) (P25)-graphene nanocomposite photocatalyst with graphene oxide and P25, using a facile one-step hydrothermal method. During the hydrothermal reaction, both of the reduction of graphene oxide and loading of P25 were achieved. The as-prepared P25-graphene photocatalyst possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously, which was rarely reported in other TiO(2)-carbon photocatalysts. Hence, in the photodegradation of methylene blue, a significant enhancement in the reaction rate was observed with P25-graphene, compared to the bare P25 and P25-CNTs with the same carbon content. Overall, this work could provide new insights into the fabrication of a TiO(2)-carbon composite as high performance photocatalysts and facilitate their application in the environmental protection issues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles.

            The production of H(2) by photocatalytic water splitting has attracted a lot attention as a clean and renewable solar H(2) generation system. Despite tremendous efforts, the present great challenge in materials science is to develop highly active photocatalysts for splitting of water at low cost. Here we report a new composite material consisting of TiO(2) nanocrystals grown in the presence of a layered MoS(2)/graphene hybrid as a high-performance photocatalyst for H(2) evolution. This composite material was prepared by a two-step simple hydrothermal process using sodium molybdate, thiourea, and graphene oxide as precursors of the MoS(2)/graphene hybrid and tetrabutylorthotitanate as the titanium precursor. Even without a noble-metal cocatalyst, the TiO(2)/MoS(2)/graphene composite reaches a high H(2) production rate of 165.3 μmol h(-1) when the content of the MoS(2)/graphene cocatalyst is 0.5 wt % and the content of graphene in this cocatalyst is 5.0 wt %, and the apparent quantum efficiency reaches 9.7% at 365 nm. This unusual photocatalytic activity arises from the positive synergetic effect between the MoS(2) and graphene components in this hybrid cocatalyst, which serve as an electron collector and a source of active adsorption sites, respectively. This study presents an inexpensive photocatalyst for energy conversion to achieve highly efficient H(2) evolution without noble metals. © 2012 American Chemical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction.

              Let your light shine: the photocatalytic reduction of carbon dioxide to the formate anion under visible light irradiation is for the first time realized over a photoactive Ti-containing metal-organic framework, NH(2)-MIL-125(Ti), which is fabricated by a facile substitution of ligands in the UV-responsive MIL-125(Ti) material.
                Bookmark

                Author and article information

                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley-Blackwell
                1616301X
                April 12 2013
                April 12 2013
                : 23
                : 14
                : 1743-1749
                Article
                10.1002/adfm.201202349
                41fae51d-9c4c-4015-8861-5a68610d7206
                © 2013

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History
                Product
                Self URI (article page): http://doi.wiley.com/10.1002/adfm.201202349

                Comments

                Comment on this article