13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles

      review-article
      a , * , b
      Journal of Neuromuscular Diseases
      IOS Press
      MMPs, TIMPs, skeletal muscle, diseases, inflammation, fibrosis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs’ overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis.

          Related collections

          Most cited references224

          • Record: found
          • Abstract: found
          • Article: not found

          Alternative activation of macrophages: mechanism and functions.

          The concept of an alternative pathway of macrophage activation has stimulated interest in its definition, mechanism, and functional significance in homeostasis and disease. We assess recent research in this field, argue for a restricted definition, and explore pathways by which the T helper 2 (Th2) cell cytokines interleukin-4 (IL-4) and IL-13 mediate their effects on macrophage cell biology, their biosynthesis, and responses to a normal and pathological microenvironment. The stage is now set to gain deeper insights into the role of alternatively activated macrophages in immunobiology. Copyright 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of fibrosis: therapeutic translation for fibrotic disease.

            Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating Mitochondrial DAMPs Cause Inflammatory Responses to Injury

              Injury causes a systemic inflammatory response syndrome (SIRS) clinically much like sepsis 1. Microbial pathogen-associated molecular patterns (PAMPs) activate innate immunocytes through pattern recognition receptors 2. Similarly, cellular injury can release endogenous damage-associated molecular patterns (DAMPs) that activate innate immunity 3. Mitochondria are evolutionary endosymbionts that were derived from bacteria 4 and so might bear bacterial molecular motifs. We show here that injury releases mitochondrial DAMPs (MTD) into the circulation with functionally important immune consequences. MTD include formyl peptides and mitochondrial DNA. These activate human neutrophils (PMN) through formyl peptide receptor-1 and TLR9 respectively. MTD promote PMN Ca2+ flux and phosphorylation of MAP kinases, thus leading to PMN migration and degranulation in vitro and in vivo. Circulating MTD can elicit neutrophil-mediated organ injury. Cellular disruption by trauma releases mitochondrial DAMPs with evolutionarily conserved similarities to bacterial PAMPs into the circulation. These can then signal through identical innate immune pathways to create a sepsis-like state. The release of such mitochondrial ‘enemies within’ by cellular injury is a key link between trauma, inflammation and SIRS.
                Bookmark

                Author and article information

                Journal
                J Neuromuscul Dis
                J Neuromuscul Dis
                JND
                Journal of Neuromuscular Diseases
                IOS Press (Nieuwe Hemweg 6B, 1013 BG Amsterdam, The Netherlands )
                2214-3599
                2214-3602
                29 November 2016
                2016
                : 3
                : 4
                : 455-473
                Affiliations
                [a ]Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière , boulevard de l’Hôpital, 75651 Paris Cedex 13, France
                [b ]The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health , 30 Guilford Street, London, UK
                Author notes
                [* ]Correspondence to: Hala S. Alameddine, PhD, Institut de Myologie, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47, boulevard de l’Hôpital, 75651 Paris Cedex 13, France. Tel.: +33 142165713; Fax: +33 142165700; E-mail: h.alameddine@ 123456institut-myologie.org .
                Article
                JND160183
                10.3233/JND-160183
                5240616
                27911334
                420bf089-bc8c-433d-9b5c-6f840bfdb319
                IOS Press and the authors. All rights reserved

                This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Review

                mmps,timps,skeletal muscle,diseases,inflammation,fibrosis
                mmps, timps, skeletal muscle, diseases, inflammation, fibrosis

                Comments

                Comment on this article