Blog
About

132
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)

      , ,

      Nature Methods

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 15

          • Record: found
          • Abstract: found
          • Article: not found

          Nonlinear magic: multiphoton microscopy in the biosciences.

          Multiphoton microscopy (MPM) has found a niche in the world of biological imaging as the best noninvasive means of fluorescence microscopy in tissue explants and living animals. Coupled with transgenic mouse models of disease and 'smart' genetically encoded fluorescent indicators, its use is now increasing exponentially. Properly applied, it is capable of measuring calcium transients 500 microm deep in a mouse brain, or quantifying blood flow by imaging shadows of blood cells as they race through capillaries. With the multitude of possibilities afforded by variations of nonlinear optics and localized photochemistry, it is possible to image collagen fibrils directly within tissue through nonlinear scattering, or release caged compounds in sub-femtoliter volumes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Precise nanometer localization analysis for individual fluorescent probes.

            Calculation of the centroid of the images of individual fluorescent particles and molecules allows localization and tracking in light microscopes to a precision about an order of magnitude greater than the microscope resolution. The factors that limit the precision of these techniques are examined and a simple equation derived that describes the precision of localization over a wide range of conditions. In addition, a localization algorithm motivated from least-squares fitting theory is constructed and tested both on image stacks of 30-nm fluorescent beads and on computer-generated images (Monte Carlo simulations). Results from the algorithm show good agreement with the derived precision equation for both the simulations and actual images. The availability of a simple equation to describe localization precision helps investigators both in assessing the quality of an experimental apparatus and in directing attention to the factors that limit further improvement. The precision of localization scales as the inverse square root of the number of photons in the spot for the shot noise limited case and as the inverse of the number of photons for the background noise limited case. The optimal image magnification depends on the expected number of photons and background noise, but, for most cases of interest, the pixel size should be about equal to the standard deviation of the point spread function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution.

               M. Gustafsson (2005)
              Contrary to the well known diffraction limit, the fluorescence microscope is in principle capable of unlimited resolution. The necessary elements are spatially structured illumination light and a nonlinear dependence of the fluorescence emission rate on the illumination intensity. As an example of this concept, this article experimentally demonstrates saturated structured-illumination microscopy, a recently proposed method in which the nonlinearity arises from saturation of the excited state. This method can be used in a simple, wide-field (nonscanning) microscope, uses only a single, inexpensive laser, and requires no unusual photophysical properties of the fluorophore. The practical resolving power is determined by the signal-to-noise ratio, which in turn is limited by photobleaching. Experimental results show that a 2D point resolution of <50 nm is possible on sufficiently bright and photostable samples.
                Bookmark

                Author and article information

                Journal
                Nature Methods
                Nat Methods
                Springer Science and Business Media LLC
                1548-7091
                1548-7105
                October 2006
                August 9 2006
                October 2006
                : 3
                : 10
                : 793-796
                10.1038/nmeth929
                © 2006

                http://www.springer.com/tdm

                Comments

                Comment on this article