352
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Uncontrolled fibrosis in organs like heart, kidney, liver and lung is detrimental and may lead to end-stage organ failure. Currently there is no effective treatment for fibrotic disorders. Transforming growth factor (TGF)-β has a fundamental role in orchestrating the process of fibrogenesis; however, interventions directly targeting TGF-β would have undesired systemic side effects due to the multiple physiological functions of TGF-β. Further characterization of the downstream signaling pathway(s) involved in TGF-β-mediated fibrosis may lead to discovery of novel treatment strategies for fibrotic disorders. Accumulating evidence suggests that Nox4 NADPH oxidase may be an important downstream effector in mediating TGF-β-induced fibrosis, while NADPH oxidase-dependent redox signaling may in turn regulate TGF-β/Smad signaling in a feed-forward manner. It is proposed that pharmacological inhibition of the Nox4 function may represent a novel approach in treatment of fibrotic disorders.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases.

          Fibroproliferative diseases, including the pulmonary fibroses, systemic sclerosis, liver cirrhosis, cardiovascular disease, progressive kidney disease, and macular degeneration, are a leading cause of morbidity and mortality and can affect all tissues and organ systems. Fibrotic tissue remodeling can also influence cancer metastasis and accelerate chronic graft rejection in transplant recipients. Nevertheless, despite its enormous impact on human health, there are currently no approved treatments that directly target the mechanism(s) of fibrosis. The primary goals of this Review series on fibrotic diseases are to discuss some of the major fibroproliferative diseases and to identify the common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NADPH Oxidase-4 Mediates Myofibroblast Activation and Fibrogenic Responses to Lung Injury

            The NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O2 to form reactive oxygen species (ROS), have increased in number during eukaryotic evolution1,2. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated3,4. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants5,6. The prototypical member of this family, NOX2 (gp91 phox ), is expressed in phagocytic cells and mediates microbicidal activities7,8. Here, we report a role for the NOX4 isoform in tissue repair functions of myofibroblasts and fibrogenesis. Transforming growth factor-β1 (TGF-β1) induces NOX4 expression in lung mesenchymal cells by a SMAD3-dependent mechanism. NOX4-dependent generation of hydrogen peroxide (H2O2) is required for TGF-β1-induced myofibroblast differentiation, extracellular matrix (ECM) production, and contractility. NOX4 is upregulated in lungs of mice subjected to non-infectious injury and in human idiopathic pulmonary fibrosis (IPF). Genetic or pharmacologic targeting of NOX4 abrogates fibrogenesis in two different murine models of lung injury. These studies support a novel function for NOX4 in tissue fibrogenesis and provide proof-of-concept for therapeutic targeting of NOX4 in recalcitrant fibrotic disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence that fibroblasts derive from epithelium during tissue fibrosis.

              Interstitial fibroblasts are principal effector cells of organ fibrosis in kidneys, lungs, and liver. While some view fibroblasts in adult tissues as nothing more than primitive mesenchymal cells surviving embryologic development, they differ from mesenchymal cells in their unique expression of fibroblast-specific protein-1 (FSP1). This difference raises questions about their origin. Using bone marrow chimeras and transgenic reporter mice, we show here that interstitial kidney fibroblasts derive from two sources. A small number of FSP1(+), CD34(-) fibroblasts migrate to normal interstitial spaces from bone marrow. More surprisingly, however, FSP1(+) fibroblasts also arise in large numbers by local epithelial-mesenchymal transition (EMT) during renal fibrogenesis. Both populations of fibroblasts express collagen type I and expand by cell division during tissue fibrosis. Our findings suggest that a substantial number of organ fibroblasts appear through a novel reversal in the direction of epithelial cell fate. As a general mechanism, this change in fate highlights the potential plasticity of differentiated cells in adult tissues under pathologic conditions.
                Bookmark

                Author and article information

                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                20 January 2014
                20 January 2014
                2014
                : 2
                : 267-272
                Affiliations
                [a ]Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
                [b ]Centre for Eye Research Australia, University of Melbourne, VIC 3002, Australia
                [c ]Department of Ophthalmology, University of Melbourne, VIC 3002, Australia
                Author notes
                [* ]Corresponding author. Tel.: +86 531 8216 9257; fax: +86 531 8616 9356. fjiang@ 123456sdu.edu.cn
                [** ]Corresponding author. Centre for Eye Research Australia (CERA), 1/32, Gisborne Street, East Melbourne, VIC 3002, Australia. Tel.: +61 3 9929 8360; fax: +61 3 9416 0926. elsa.chan@ 123456unimelb.edu.au
                Article
                S2213-2317(14)00027-5
                10.1016/j.redox.2014.01.012
                3909817
                24494202
                4217a09d-5c38-45c7-aa8f-1ca0b0949d5c
                © 2014 The Authors
                History
                : 13 January 2014
                : 14 January 2014
                Categories
                Graphical Review

                nox4,redox signaling,fibrosis,transforming growth factor-β,nadph oxidase

                Comments

                Comment on this article