Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Locus-specific mutation databases: pitfalls and good practice based on the p53 experience.

      Nature reviews. Cancer

      genetics, organization & administration, Databases, Genetic, Genes, p53, physiology, Humans, Mutation, Neoplasms, Database Management Systems

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Between 50,000 and 60,000 mutations have been described in various genes that are associated with a wide variety of diseases. Reporting, storing and analysing these data is an important challenge as such data provide invaluable information for both clinical medicine and basic science. Locus-specific databases have been developed to exploit this huge volume of data. The p53 mutation database is a paradigm, as it constitutes the largest collection of somatic mutations (22,000). However, there are several biases in this database that can lead to serious erroneous interpretations. We describe several rules for mutation database management that could benefit the entire scientific community.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion.

          Consistent gene mutation nomenclature is essential for efficient and accurate reporting, testing, and curation of the growing number of disease mutations and useful polymorphisms being discovered in the human genome. While a codified mutation nomenclature system for simple DNA lesions has now been adopted broadly by the medical genetics community, it is inherently difficult to represent complex mutations in a unified manner. In this article, suggestions are presented for reporting just such complex mutations. Copyright 2000 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A.

            Multiple endocrine neoplasia type 2A (MEN 2A) is a dominantly inherited cancer syndrome that affects tissues derived from neural ectoderm. It is characterized by medullary thyroid carcinoma (MTC) and phaeochromocytoma. The MEN2A gene has recently been localized by a combination of genetic and physical mapping techniques to a 480-kilobase region in chromosome 10q11.2 (refs 2,3). The DNA segment encompasses the RET proto-oncogene, a receptor tyrosine kinase gene expressed in MTC and phaeochromocytoma and at lower levels in normal human thyroid. This suggested RET as a candidate for the MEN2A gene. We have identified missense mutations of the RET proto-oncogene in 20 of 23 apparently distinct MEN 2A families, but not in 23 normal controls. Further, 19 of these 20 mutations affect the same conserved cysteine residue at the boundary of the RET extracellular and transmembrane domains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma.

              Multiple endocrine neoplasia type 2 (MEN 2) comprises three clinically distinct, dominantly inherited cancer syndromes. MEN 2A patients develop medullary thyroid carcinoma (MTC) and phaeochromocytoma. MEN 2B patients show in addition ganglioneuromas of the gastrointestinal tract and skeletal abnormalities. In familial MTC, only the thyroid is affected. Germ-line mutations of the RET proto-oncogene have recently been reported in association with MEN 2A and familial MTC. All mutations occurred within codons specifying cysteine residues in the transition point between the RET protein extracellular and transmembrane domains. We now show that MEN 2B is also associated with mutation of the RET proto-oncogene. A mutation in codon 664, causing the substitution of a threonine for a methionine in the tyrosine kinase domain of the protein, was found in all nine unrelated MEN 2B patients studied. The same mutation was found in six out of 18 sporadic tumours.
                Bookmark

                Author and article information

                Journal
                16397528
                10.1038/nrc1783

                Comments

                Comment on this article