3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dual-Targeted Gold Nanoprism for Recognition of Early Apoptosis, Dual-Model Imaging and Precise Cancer Photothermal Therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photothermal therapy as novel strategy to convert near-infrared (NIR) light into heat for treatment cancers has attracted great attention and been widely studied. However, side effects and low efficiency remain the main challenge of precise cancer photothermal therapy.

          Methods: In this study, we have successfully fabricated and characterized the dual-targeted gold nanoprisms, whereby bare gold nanoprisms (Au NPR) were conjugated to a phenanthroline derivatives-functionalized tetraphenylethene (TPE) and further stabilized with target peptide aptamers via Au-S bonds (Au-Apt-TPE). Then, the remaining nitrogen atoms of the Au-Apt-TPE could effectively chelate with Zn 2+ ions (Au-Apt-TPE@Zn) for monitoring early stage apoptotic cells.

          Results: The as-synthesized Au-Apt-TPE@Zn exhibited good monodispersity, size stability and consistent spectral characteristics. TPE synthesized here showed aggregation-induced emission (AIE) characteristics, and zinc conjunction (TPE@Zn) endowed Au-Apt-TPE@Zn with the cell membrane-targeted ability to selectively recognize the membranes of early stage apoptotic cells but not respond to healthy cells, which provided valuable diagnosis information on therapeutic efficacy. Au-Apt-TPE@Zn achieved specifically nuclear-targeted ability by surface decoration of AS1411 DNA aptamer. Au-Apt-TPE@Zn under NIR irradiation showed effective photothermal therapy against SGC-7901 human gastric carcinoma cells growth in vitro by inducing apoptosis through triggering reactive oxygen species (ROS) overproduction and regulating multiple signal crosstalk. In vivo studies revealed that Au-Apt-TPE@Zn under NIR irradiation showed deep penetration and dual-model imaging application (cancer-targeted fluorescence imaging and light-up photoacoustic imaging). Au-Apt-TPE@Zn under NIR irradiation also displayed strong photothermal therapy against gastric carcinoma xenograft growth in vivo by induction of apoptosis. Importantly, analysis of histopathology, hematotoxicity and immunocytotoxicity indicated that Au-Apt-TPE@Zn had less side effect and high biocompatibility.

          Conclusions: Our findings validated the design of using Au nanoprism with AIE materials and dual-targeted decoration could be an effective strategy in recognition of early apoptosis, dual-model imaging and precise cancer photothermal therapy.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy.

          An active cell membrane-camouflaged nanoparticle, owning to membrane antigens and membrane structure, can achieve special properties such as specific recognition, long blood circulation, and immune escaping. Herein, we reported a cancer cell membrane-cloaked nanoparticle system as a theranostic nanoplatform. The biomimetic nanoparticles (indocyanine green (ICG)-loaded and cancer cell membrane-coated nanoparticles, ICNPs) exhibit a core-shell nanostructure consisting of an ICG-polymeric core and cancer cell membrane shell. ICNPs demonstrated specific homologous targeting to cancer cells with good monodispersity, preferable photothermal response, and excellent fluorescence/photoacoustic (FL/PA) imaging properties. Benefited from the functionalization of the homologous binding adhesion molecules from cancer cell membranes, ICNPs significantly promoted cell endocytosis and homologous-targeting tumor accumulation in vivo. Moreover, ICNPs were also good at disguising as cells to decrease interception by the liver and kidney. Through near-infrared (NIR)-FL/PA dual-modal imaging, ICNPs could realize real-time monitored in vivo dynamic distribution with high spatial resolution and deep penetration. Under NIR laser irradiation, ICNPs exhibited highly efficient photothermal therapy to eradicate xenografted tumor. The robust ICNPs with homologous properties of cancer cell membranes can serve as a bionic nanoplatform for cancer-targeted imaging and phototherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles.

            In this work, a nanoscale reduced graphene oxide-iron oxide nanoparticle (RGO-IONP) complex is noncovalently functionalized with polyethylene glycol (PEG), obtaining a RGO-IONP-PEG nanocomposite with excellent physiological stability, strong NIR optical absorbance, and superparamagnetic properties. Using this theranostic nanoprobe, in-vivo triple modal fluorescence, photoacoustic, and magnetic resonance imaging are carried out, uncovering high passive tumor targeting, which is further used for effective photothermal ablation of tumors in mice. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions.

              Gold nanorods have promising applications in the fields of drug delivery and photothermal therapy. These promises arise from the nanorods' unique optical and photothermal properties, the availability of synthetic protocols that can tune the size and shape of the particles, the ability to modify the surface and conjugate drugs/molecules to the nanorods, and the relative biocompatibility of gold nanorods. In this review, current progress in using gold nanorods as phototherapeutic agents and as drug delivery vehicles is summarized. Issues of dosage, toxicity and biological interactions at three levels (biological media alone; cells; whole organisms) are discussed, concluding with recommendations for future work in this area. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2019
                28 July 2019
                : 9
                : 19
                : 5610-5625
                Affiliations
                [1 ]School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
                [2 ]Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
                Author notes
                ✉ Corresponding author: Dongdong Sun, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China. Tel: +86-0551-65786703; fax: +86-0551-65786703. Email: sunddwj@ 123456ahau.edu.cn Cundong Fan, 2 Yingsheng East Road, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China. Email: cdfan@ 123456tsmc.edu.cn . Tel: +86-0538-6230027; fax: +86-0538-6230027

                *The authors contributed equally to this work.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov09p5610
                10.7150/thno.34755
                6735394
                31534506
                4237c648-7ed7-4050-805a-e079743bf22c
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 10 March 2019
                : 14 June 2019
                Categories
                Research Paper

                Molecular medicine
                gold nanoprisms,aggregation-induced emission,apoptosis,reactive oxygen species,photothermal therapy

                Comments

                Comment on this article