25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Caveolin-1 Regulates Transforming Growth Factor (TGF)-β/SMAD Signaling through an Interaction with the TGF-β Type I Receptor

      journal-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Journal of Biological Chemistry, 276(9), 6727-6738

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          TGF-beta signal transduction.

          The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caveolin, a protein component of caveolae membrane coats.

            Caveolae have been implicated in the transcytosis of macromolecules across endothelial cells and in the receptor-mediated uptake of 5-methyltetrahydrofolate. Structural studies indicate that caveolae are decorated on their cytoplasmic surface by a unique array of filaments or strands that form striated coatings. To understand how these nonclathrin-coated pits function, we performed structural analysis of the striated coat and searched for the molecular component(s) of the coat material. The coat cannot be removed by washing with high salt; however, exposure of membranes to cholesterol-binding drugs caused invaginated caveolae to flatten and the striated coat to disassemble. Antibodies directed against a 22 kd substrate for v-src tyrosine kinase in virus-transformed chick embryo fibroblasts decorated the filaments, suggesting that this molecule is a component of the coat. We have named the molecule caveolin. Caveolae represent a third type of coated membrane specialization that is involved in molecular transport.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling.

              TGF-beta signals from the membrane to the nucleus through serine/threonine kinase receptors and their downstream effectors, termed SMAD proteins. The activated TGF-beta receptor induces phosphorylation of two such proteins, Smad2 and Smad3, which form hetero-oligomeric complex(es) with Smad4/DPC4 that translocate to the nucleus, where they then regulate transcriptional responses. However, the mechanisms by which the intracellular signals of TGF-beta are switched off are unclear. Here we report the identification of Smad7, which is related to Smad6. Transfection of Smad7 blocks responses mediated by TGF-beta in mammalian cells, and injection of Smad7 RNA into Xenopus embryos blocks activin/TGF-beta signalling. Smad7 associates stably with the TGF-beta receptor complex, but is not phosphorylated upon TGF-beta stimulation. TGFbeta-mediated phosphorylation of Smad2 and Smad3 is inhibited by Smad7, indicating that the antagonistic effect of Smad7 is exerted at this important regulatory step. TGF-beta rapidly induces expression of Smad7 mRNA, suggesting that Smad7 may participate in a negative feedback loop to control TGF-beta responses.
                Bookmark

                Author and article information

                Journal
                American Society for Biochemistry & Molecular Biology (ASBMB)
                2001
                02 March 2001
                23 June 2017
                Article
                10.1074/JBC.M008340200
                11102446
                423e8cfb-c120-4649-a74d-9047db6b225c
                History

                Comments

                Comment on this article