Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction.

Journal of the American Chemical Society

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Advanced materials for electrocatalytic and photoelectrochemical water splitting are central to the area of renewable energy. In this work, we developed a selective solvothermal synthesis of MoS(2) nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution. The resulting MoS(2)/RGO hybrid material possessed nanoscopic few-layer MoS(2) structures with an abundance of exposed edges stacked onto graphene, in strong contrast to large aggregated MoS(2) particles grown freely in solution without GO. The MoS(2)/RGO hybrid exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER) relative to other MoS(2) catalysts. A Tafel slope of ∼41 mV/decade was measured for MoS(2) catalysts in the HER for the first time; this exceeds by far the activity of previous MoS(2) catalysts and results from the abundance of catalytic edge sites on the MoS(2) nanoparticles and the excellent electrical coupling to the underlying graphene network. The ∼41 mV/decade Tafel slope suggested the Volmer-Heyrovsky mechanism for the MoS(2)-catalyzed HER, with electrochemical desorption of hydrogen as the rate-limiting step. © 2011 American Chemical Society

      Related collections

      Author and article information

      Journal
      10.1021/ja201269b
      21510646

      Comments

      Comment on this article