16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Alternative splicing regulates Prdm1/Blimp-1 DNA binding activities and corepressor interactions.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prdm1/Blimp-1 is a master regulator of gene expression in diverse tissues of the developing embryo and adult organism. Its C-terminal zinc finger domain mediates nuclear import, DNA binding, and recruitment of the corepressors G9a and HDAC1/2. Alternatively spliced transcripts lacking exon 7 sequences encode a structurally divergent isoform (Blimp-1Δexon7) predicted to have distinct functions. Here we demonstrate that the short Blimp-1Δexon7 isoform lacks DNA binding activity and fails to bind G9a or HDAC1/2 but retains the ability to interact with PRMT5. To investigate functional roles of alternative splicing in vivo, we engineered novel mouse strains via embryonic stem (ES) cell technology. Like null mutants, embryos carrying a targeted deletion of exon 7 and exclusively expressing Blimp-1Δexon7 die at around embryonic day 10.5 (E10.5) due to placental defects. In heterozygous Δexon7 mice, there is no evidence of dominant-negative effects. Mice carrying a knock-in allele with an exon 6-exon 7 fusion express full-length Blimp-1 only, develop normally, are healthy and fertile as adults, and efficiently generate mature plasma cells. These findings strongly suggest that the short Blimp-1Δexon7 isoform is dispensable. We propose that developmentally regulated alternative splicing is influenced by chromatin structure at the locus and fine-tunes Blimp-1's functional capabilities.

          Related collections

          Author and article information

          Journal
          Mol Cell Biol
          Molecular and cellular biology
          American Society for Microbiology
          1098-5549
          0270-7306
          Sep 2012
          : 32
          : 17
          Affiliations
          [1 ] Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
          Article
          MCB.00174-12
          10.1128/MCB.00174-12
          3422002
          22733990
          4252ab9f-371f-4d26-9427-548920ccb82e
          History

          Comments

          Comment on this article