18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      How Does the Patient Benefit from Clinical PET?

      review-article
      Theranostics
      Ivyspring International Publisher
      PET, PET/CT, [18F]-fluorodeoxyglucose, patient

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clinical molecular imaging by use of PET and PET/CT is increasingly important in routine oncological practice worldwide. A vast majority of clinical PET investigations are performed with [ 18F]-fluorodeoxyglucose (FDG), but there is a growing interest in novel molecular probes among scientists and clinicians. Beyond FDG, a small number of different tracers have been shown to be of clinical value. With a growing commercial interest in tracer development, many more are under investigation. This review provides some examples of clinical situations where tracers other than FDG have been found useful and an outlook towards technical and regulatory development needed to allow the full impact of clinical PET to benefit the individual patient.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors.

          The purpose of this article is to review the status and limitations of anatomic tumor response metrics including the World Health Organization (WHO) criteria, the Response Evaluation Criteria in Solid Tumors (RECIST), and RECIST 1.1. This article also reviews qualitative and quantitative approaches to metabolic tumor response assessment with (18)F-FDG PET and proposes a draft framework for PET Response Criteria in Solid Tumors (PERCIST), version 1.0. PubMed searches, including searches for the terms RECIST, positron, WHO, FDG, cancer (including specific types), treatment response, region of interest, and derivative references, were performed. Abstracts and articles judged most relevant to the goals of this report were reviewed with emphasis on limitations and strengths of the anatomic and PET approaches to treatment response assessment. On the basis of these data and the authors' experience, draft criteria were formulated for PET tumor response to treatment. Approximately 3,000 potentially relevant references were screened. Anatomic imaging alone using standard WHO, RECIST, and RECIST 1.1 criteria is widely applied but still has limitations in response assessments. For example, despite effective treatment, changes in tumor size can be minimal in tumors such as lymphomas, sarcoma, hepatomas, mesothelioma, and gastrointestinal stromal tumor. CT tumor density, contrast enhancement, or MRI characteristics appear more informative than size but are not yet routinely applied. RECIST criteria may show progression of tumor more slowly than WHO criteria. RECIST 1.1 criteria (assessing a maximum of 5 tumor foci, vs. 10 in RECIST) result in a higher complete response rate than the original RECIST criteria, at least in lymph nodes. Variability appears greater in assessing progression than in assessing response. Qualitative and quantitative approaches to (18)F-FDG PET response assessment have been applied and require a consistent PET methodology to allow quantitative assessments. Statistically significant changes in tumor standardized uptake value (SUV) occur in careful test-retest studies of high-SUV tumors, with a change of 20% in SUV of a region 1 cm or larger in diameter; however, medically relevant beneficial changes are often associated with a 30% or greater decline. The more extensive the therapy, the greater the decline in SUV with most effective treatments. Important components of the proposed PERCIST criteria include assessing normal reference tissue values in a 3-cm-diameter region of interest in the liver, using a consistent PET protocol, using a fixed small region of interest about 1 cm(3) in volume (1.2-cm diameter) in the most active region of metabolically active tumors to minimize statistical variability, assessing tumor size, treating SUV lean measurements in the 1 (up to 5 optional) most metabolically active tumor focus as a continuous variable, requiring a 30% decline in SUV for "response," and deferring to RECIST 1.1 in cases that do not have (18)F-FDG avidity or are technically unsuitable. Criteria to define progression of tumor-absent new lesions are uncertain but are proposed. Anatomic imaging alone using standard WHO, RECIST, and RECIST 1.1 criteria have limitations, particularly in assessing the activity of newer cancer therapies that stabilize disease, whereas (18)F-FDG PET appears particularly valuable in such cases. The proposed PERCIST 1.0 criteria should serve as a starting point for use in clinical trials and in structured quantitative clinical reporting. Undoubtedly, subsequent revisions and enhancements will be required as validation studies are undertaken in varying diseases and treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer.

            We performed a feasibility study to determine the optimal dosage and time of administration of the monoclonal antibody zirconium-89 ((89)Zr)-trastuzumab to enable positron emission tomography (PET) imaging of human epidermal growth factor receptor 2 (HER2)-positive lesions. Fourteen patients with HER2-positive metastatic breast cancer received 37 MBq of (89)Zr-trastuzumab at one of three doses (10 or 50 mg for those who were trastuzumab-naive and 10 mg for those who were already on trastuzumab treatment). The patients underwent at least two PET scans between days 2 and 5. The results of the study showed that the best time for assessment of (89)Zr-trastuzumab uptake by tumors was 4-5 days after the injection. For optimal PET-scan results, trastuzumab-naive patients required a 50 mg dose of (89)Zr-trastuzumab, and patients already on trastuzumab treatment required a 10 mg dose. The accumulation of (89)Zr-trastuzumab in lesions allowed PET imaging of most of the known lesions and some that had been undetected earlier. The relative uptake values (RUVs) (mean +/- SEM) were 12.8 +/- 5.8, 4.1 +/- 1.6, and 3.5 +/- 4.2 in liver, bone, and brain lesions, respectively, and 5.9 +/- 2.4, 2.8 +/- 0.7, 4.0 +/- 0.7, and 0.20 +/- 0.1 in normal liver, spleen, kidneys, and brain tissue, respectively. PET scanning after administration of (89)Zr-trastuzumab at appropriate doses allows visualization and quantification of uptake in HER2-positive lesions in patients with metastatic breast cancer.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A tabulated summary of the FDG PET literature.

                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2012
                4 May 2012
                : 2
                : 5
                : 427-436
                Affiliations
                Section of Nuclear Medicine & PET, Department of Radiology, Oncology and Radiation Sciences. Uppsala University, SE-75185, Uppsala, Sweden.
                Author notes
                ✉ Corresponding author: PET Center, Entrance 86, Uppsala University Hospital, S-75185 Uppsala, Sweden. Phone: +46186110609. Email: jens.sorensen@ 123456ros.uu.se

                Competing Interests: The author has declared that no competing interest exists.

                Article
                thnov02p0427
                10.7150/thno.3794
                3360196
                22768023
                4257d6e1-8c65-4192-8d6a-da22f7bafc35
                © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
                History
                : 13 November 2011
                : 26 February 2012
                Categories
                Review

                Molecular medicine
                pet,pet/ct,[18f]-fluorodeoxyglucose,patient
                Molecular medicine
                pet, pet/ct, [18f]-fluorodeoxyglucose, patient

                Comments

                Comment on this article