13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural alterations in breast stromal and epithelial DNA: the influence of 8,5'-cyclo-2'-deoxyadenosine.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          (5'S)-8,5'-Cyclo-2'-deoxyadenosine (S-cdA), which arises from the reaction of the hydroxyl radical (*OH) with 2'-deoxyadenosine in DNA, is a lesion comprising a base-sugar linkage that distorts the DNA backbone. This structure impedes transcription and blocks polymerase action. Further, a single S-cdA lesion in the TATA box reduces gene expression. Considering the ability of S-cdA to disrupt DNA structure, which is likely associated with increased cancer risk, we determined S-cdA concentrations in the DNA of stroma, epithelium, and myoepithelium from normal breast tissues using liquid chromatography/mass spectrometry (LC/MS). We also identified differences in the base and backbone structures using Fourier transform-infrared (FT-IR) spectroscopy. LC/MS revealed that the lowest concentration of S-cdA in the stroma (0.04 +/- 0.02 lesions/10(6) bases) occurred in women ages 17 to 30. The highest concentration (0.13 +/- 0.07 lesions/10(6) bases) was found in women 33 to 46. FT-IR spectroscopy showed significant base and backbone differences in the stromal DNA between the women under 30 and those over 50. These findings imply that distortions in the geometry of the helix increase with age, reaching significant proportions in older women. No differences were found in the S-cdA concentrations between the three cell types, suggesting that the *OH attack on the base structure may be essentially random. Initial insight is provided on changes in DNA structure that potentially affect gene expression and increase breast cancer risk.

          Related collections

          Author and article information

          Journal
          Cell Cycle
          Cell cycle (Georgetown, Tex.)
          Informa UK Limited
          1551-4005
          1551-4005
          Jun 2006
          : 5
          : 11
          Affiliations
          [1 ] Biochemical Oncology Program, Pacific Northwest Research Institute, Seattle, Washington, USA.
          Article
          2816
          10.4161/cc.5.11.2816
          16760644
          42700d1c-86ae-4053-9077-2fb554213f4c
          History

          Comments

          Comment on this article