38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hybridisation is associated with increased fecundity and size in invasive taxa: meta-analytic support for the hybridisation-invasion hypothesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hypothesis that interspecific hybridisation promotes invasiveness has received much recent attention, but tests of the hypothesis can suffer from important limitations. Here, we provide the first systematic review of studies experimentally testing the hybridisation-invasion (H-I) hypothesis in plants, animals and fungi. We identified 72 hybrid systems for which hybridisation has been putatively associated with invasiveness, weediness or range expansion. Within this group, 15 systems (comprising 34 studies) experimentally tested performance of hybrids vs. their parental species and met our other criteria. Both phylogenetic and non-phylogenetic meta-analyses demonstrated that wild hybrids were significantly more fecund and larger than their parental taxa, but did not differ in survival. Resynthesised hybrids (which typically represent earlier generations than do wild hybrids) did not consistently differ from parental species in fecundity, survival or size. Using meta-regression, we found that fecundity increased (but survival decreased) with generation in resynthesised hybrids, suggesting that natural selection can play an important role in shaping hybrid performance – and thus invasiveness – over time. We conclude that the available evidence supports the H-I hypothesis, with the caveat that our results are clearly driven by tests in plants, which are more numerous than tests in animals and fungi.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: not found
          • Book: not found

          R: A language and environment for statistical computing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TimeTree: a public knowledge-base of divergence times among organisms.

            Biologists and other scientists routinely need to know times of divergence between species and to construct phylogenies calibrated to time (timetrees). Published studies reporting time estimates from molecular data have been increasing rapidly, but the data have been largely inaccessible to the greater community of scientists because of their complexity. TimeTree brings these data together in a consistent format and uses a hierarchical structure, corresponding to the tree of life, to maximize their utility. Results are presented and summarized, allowing users to quickly determine the range and robustness of time estimates and the degree of consensus from the published literature. TimeTree is available at http://www.timetree.net
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased genetic variation and evolutionary potential drive the success of an invasive grass.

              Despite the increasing biological and economic impacts of invasive species, little is known about the evolutionary mechanisms that favor geographic range expansion and evolution of invasiveness in introduced species. Here, we focus on the invasive wetland grass Phalaris arundinacea L. and document the evolutionary consequences that resulted from multiple and uncontrolled introductions into North America of genetic material native to different European regions. Continental-scale genetic variation occurring in reed canarygrass' European range has been reshuffled and recombined within North American introduced populations, giving rise to a number of novel genotypes. This process alleviated genetic bottlenecks throughout reed canarygrass' introduced range, including in peripheral populations, where depletion of genetic diversity is expected and is observed in the native range. Moreover, reed canarygrass had higher genetic diversity and heritable phenotypic variation in its invasive range relative to its native range. The resulting high evolutionary potential of invasive populations allowed for rapid selection of genotypes with higher vegetative colonization ability and phenotypic plasticity. Our results show that repeated introductions of a single species may inadvertently create harmful invaders with high adaptive potential. Such invasive species may be able to evolve in response to changing climate, allowing them to have increasing impact on native communities and ecosystems in the future. More generally, multiple immigration events may thus trigger future adaptation and geographic spread of a species population by preventing genetic bottlenecks and generating genetic novelties through recombination.
                Bookmark

                Author and article information

                Journal
                Ecol Lett
                Ecol. Lett
                ele
                Ecology Letters
                BlackWell Publishing Ltd (Oxford, UK )
                1461-023X
                1461-0248
                November 2014
                19 September 2014
                : 17
                : 11
                : 1464-1477
                Affiliations
                [1 ]Department of Evolution, Ecology, and Organismal Biology, The Ohio State University Columbus, OH, 43210, USA
                [2 ]Department of Biology, University of New Mexico Albuquerque, NM, 87131, USA
                Author notes
                [* ]Correspondence: E-mail: hovick.2@ 123456osu.edu
                Article
                10.1111/ele.12355
                4231983
                25234578
                428f33dd-7e83-490f-b53c-96822f92acd9
                © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 12 May 2014
                : 11 June 2014
                : 14 August 2014
                Categories
                Review and Synthesis

                Ecology
                adaptive evolution,colonisation,hybridisation,introgression,invasion genetics,phylogenetic meta-analysis,polyploidy,range expansion,weeds

                Comments

                Comment on this article