37
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Influence of Repressor DNA Binding Site Architecture on Transcriptional Control

      research-article
      ,
      mBio
      American Society of Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          How the architecture of DNA binding sites dictates the extent of repression of promoters is not well understood. Here, we addressed the importance of the number and information content of the three direct repeats (DRs) in the binding and repression of the icdA promoter by the phosphorylated form of the global Escherichia coli repressor ArcA (ArcA-P). We show that decreasing the information content of the two sites with the highest information (DR1 and DR2) eliminated ArcA binding to all three DRs and ArcA repression of icdA. Unexpectedly, we also found that DR3 occupancy functions principally in repression, since mutation of this low-information-content site both eliminated DNA binding to DR3 and significantly weakened icdA repression, despite the fact that binding to DR1 and DR2 was intact. In addition, increasing the information content of any one of the three DRs or addition of a fourth DR increased ArcA-dependent repression but perturbed signal-dependent regulation of repression. Thus, our data show that the information content and number of DR elements are critical architectural features for maintaining a balance between high-affinity binding and signal-dependent regulation of icdA promoter function in response to changes in ArcA-P levels. Optimization of such architectural features may be a common strategy to either dampen or enhance the sensitivity of DNA binding among the members of the large OmpR/PhoB family of regulators as well as other transcription factors.

          IMPORTANCE

          In Escherichia coli, the response regulator ArcA maintains homeostasis of redox carriers under O 2-limiting conditions through a comprehensive repression of carbon oxidation pathways that require aerobic respiration to recycle redox carriers. Although a binding site architecture comprised of a variable number of sequence recognition elements has been identified within the promoter regions of ArcA-repressed operons, it is unclear how this variable architecture dictates transcriptional regulation. By dissecting the role of multiple sequence elements within the icdA promoter, we provide insight into the design principles that allow ArcA to repress transcription within diverse promoter contexts. Our data suggest that the arrangement of recognition elements is tailored to achieve sufficient repression of a given promoter while maintaining appropriate signal-dependent regulation of repression, providing insight into how diverse binding site architectures link changes in O 2 with the fine-tuning of carbon oxidation pathway levels.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          [57] Sequencing end-labeled DNA with base-specific chemical cleavages

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            EcoCyc: a comprehensive database of Escherichia coli biology

            EcoCyc (http://EcoCyc.org) is a comprehensive model organism database for Escherichia coli K-12 MG1655. From the scientific literature, EcoCyc captures the functions of individual E. coli gene products; their regulation at the transcriptional, post-transcriptional and protein level; and their organization into operons, complexes and pathways. EcoCyc users can search and browse the information in multiple ways. Recent improvements to the EcoCyc Web interface include combined gene/protein pages and a Regulation Summary Diagram displaying a graphical overview of all known regulatory inputs to gene expression and protein activity. The graphical representation of signal transduction pathways has been updated, and the cellular and regulatory overviews were enhanced with new functionality. A specialized undergraduate teaching resource using EcoCyc is being developed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The bacterial LexA transcriptional repressor.

              Bacteria respond to DNA damage by mounting a coordinated cellular response, governed by the RecA and LexA proteins. In Escherichia coli, RecA stimulates cleavage of the LexA repressor, inducing more than 40 genes that comprise the SOS global regulatory network. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation. In some well-characterised pathogens, induction of the SOS response modulates the evolution and dissemination of drug resistance, as well as synthesis, secretion and dissemination of the virulence. In this review, we discuss the structure of LexA protein, particularly with respect to distinct conformations that enable repression of SOS genes via specific DNA binding or repressor cleavage during the response to DNA damage. These may provide new starting points in the battle against the emergence of bacterial pathogens and the spread of drug resistance among them.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                26 August 2014
                Sep-Oct 2014
                : 5
                : 5
                : e01684-14
                Affiliations
                [1]Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
                Author notes
                Address correspondence to Patricia J. Kiley, pjkiley@ 123456wisc.edu .
                [*]

                Present address: Dan M. Park, Lawrence Livermore National Laboratory, Livermore, California, USA.

                Editor Susan Gottesman, National Cancer Institute

                This article is a direct contribution from a Fellow of the American Academy of Microbiology.

                Article
                mBio01684-14
                10.1128/mBio.01684-14
                4173790
                25161193
                429efafa-f815-4eb0-b1b6-a76476453793
                Copyright © 2014 Park and Kiley.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 July 2014
                : 25 July 2014
                Page count
                Pages: 11
                Categories
                Research Article
                Custom metadata
                September/October 2014

                Life sciences
                Life sciences

                Comments

                Comment on this article