8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Towards the generalized iterative synthesis of small molecules

      , ,
      Nature Reviews Chemistry
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. </p>

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          Organic Photoredox Catalysis.

          In this review, we highlight the use of organic photoredox catalysts in a myriad of synthetic transformations with a range of applications. This overview is arranged by catalyst class where the photophysics and electrochemical characteristics of each is discussed to underscore the differences and advantages to each type of single electron redox agent. We highlight both net reductive and oxidative as well as redox neutral transformations that can be accomplished using purely organic photoredox-active catalysts. An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences.

            Nearing 30 years since its introduction, 3D printing technology is set to revolutionize research and teaching laboratories. This feature encompasses the history of 3D printing, reviews various printing methods, and presents current applications. The authors offer an appraisal of the future direction and impact this technology will have on laboratory settings as 3D printers become more accessible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contrast agents for molecular photoacoustic imaging.

              Photoacoustic imaging (PAI) is an emerging tool that bridges the traditional depth limits of ballistic optical imaging and the resolution limits of diffuse optical imaging. Using the acoustic waves generated in response to the absorption of pulsed laser light, it provides noninvasive images of absorbed optical energy density at depths of several centimeters with a resolution of ∼100 μm. This versatile and scalable imaging modality has now shown potential for molecular imaging, which enables visualization of biological processes with systemically introduced contrast agents. Understanding the relative merits of the vast range of contrast agents available, from small-molecule dyes to gold and carbon nanostructures to liposome encapsulations, is a considerable challenge. Here we critically review the physical, chemical and biochemical characteristics of the existing photoacoustic contrast agents, highlighting key applications and present challenges for molecular PAI.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Chemistry
                Nat. rev. chem.
                Springer Nature America, Inc
                2397-3358
                February 7 2018
                February 7 2018
                February 7 2018
                : 2
                : 2
                : 0115
                Article
                10.1038/s41570-018-0115
                5912323
                29696152
                42a32bef-3653-42fc-b3d7-7475a9748776
                © 2018
                History

                Comments

                Comment on this article

                scite_

                Similar content1,936

                Cited by34

                Most referenced authors4,295