28
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid.

      Planta
      Abscisic Acid, metabolism, physiology, Acclimatization, Bryopsida, genetics, Freezing, Gene Expression Regulation, Plant, Plant Proteins, biosynthesis, Signal Transduction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bryophyte species growing in areas in which temperatures fall below zero in winter are likely to have tolerance to freezing stress. It is well established in higher plants that freezing tolerance is acquired by exposure to non-freezing low temperatures, accompanied by expression of various genes and increases in levels of the stress hormone abscisic acid (ABA). However, little is known about the physiological changes induced by cold acclimation in non-vascular plants such as bryophytes. We examined the effects of low temperatures on protonema cells of the moss Physcomitrella patens (Hedw.) Bruch and Schimp. The freezing tolerance of protonema cells was clearly increased by incubation at low temperatures ranging from 10 degrees C to 0 degrees C, with maximum tolerance achieved by incubation at 0 degrees C for several days. The enhancement of freezing tolerance by low temperatures occurred in both light and dark conditions and was accompanied by accumulation of several transcripts for late-embryogenesis-abundant (LEA) proteins and boiling-soluble proteins. By de-acclimation, low-temperature-induced expression of these transcripts and proteins, as well as the freezing tolerance, was reduced. Interestingly, endogenous levels of ABA in tissues or that secreted into the culture medium were not specifically increased by low-temperature treatment. Furthermore, removal of ABA from the medium by addition of activated charcoal did not affect low-temperature-induced freezing tolerance of the protonema cells. Our results provide evidence that bryophytes have an ABA-independent cold-signaling pathway leading to expression of stress-related genes and resultant acquisition of freezing tolerance.

          Related collections

          Author and article information

          Journal
          15349781
          10.1007/s00425-004-1361-z

          Chemistry
          Abscisic Acid,metabolism,physiology,Acclimatization,Bryopsida,genetics,Freezing,Gene Expression Regulation, Plant,Plant Proteins,biosynthesis,Signal Transduction

          Comments

          Comment on this article