23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      All India difficult airway association (AIDAA) consensus guidelines for airway management in the operating room during the COVID-19 pandemic

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) which causes coronavirus disease (COVID-19) is a highly contagious virus. The closed environment of the operation room (OR) with aerosol generating airway management procedures increases the risk of transmission of infection among the anaesthesiologists and other OR personnel. Wearing complete, fluid impermeable personal protective equipment (PPE) for airway related procedures is recommended. Team preparation, clear methods of communication and appropriate donning and doffing of PPEs are essential to prevent spread of the infection. Optimal pre oxygenation, rapid sequence induction and video laryngoscope aided tracheal intubation (TI) are recommended. Supraglottic airways (SGA) and surgical cricothyroidotomy should be preferred for airway rescue. High flow nasal oxygen, face mask ventilation, nebulisation, small bore cannula cricothyroidotomy with jet ventilation should be avoided. Tracheal extubation should be conducted with the same levels of precaution as TI. The All India Difficult Airway Association (AIDAA) aims to provide consensus guidelines for safe airway management in the OR, while attempting to prevent transmission of infection to the OR personnel during the COVID-19 pandemic.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found

          Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China

          In December 2019, novel coronavirus (2019-nCoV)-infected pneumonia (NCIP) occurred in Wuhan, China. The number of cases has increased rapidly but information on the clinical characteristics of affected patients is limited.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

            To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Detection of SARS-CoV-2 in Different Types of Clinical Specimens

              This study describes results of PCR and viral RNA testing for SARS-CoV-2 in bronchoalveolar fluid, sputum, feces, blood, and urine specimens from patients with COVID-19 infection in China to identify possible means of non-respiratory transmission.
                Bookmark

                Author and article information

                Journal
                Indian J Anaesth
                Indian J Anaesth
                IJA
                Indian Journal of Anaesthesia
                Wolters Kluwer - Medknow (India )
                0019-5049
                0976-2817
                May 2020
                23 May 2020
                : 64
                : Suppl 2
                : S107-S115
                Affiliations
                [1]Chief Consultant Anesthesiologist, Kailash Cancer Hospital and Research Centre, Muni Ashram, Goraj, VINS, Vadodara, Gujarat, India
                [1 ]Department of Onco-Anaesthesiology and Palliative Medicine, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
                [2 ]Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
                [3 ]Department of Anaesthesiology, JIPMER, Puducherry, India
                [4 ]Department of Anaesthesiology and Critical Care, K S Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
                [5 ]Department of Anaesthesiology and Critical Care, J N Medical College, AMU, Aligarh, Uttar Pradesh, India
                [6 ]Professor of Anaesthesiology, Medical College, Kolkata, West Bengal, India
                Author notes
                Address for correspondence: Dr. Rakesh Garg, Additional Professor of Anaesthesiology, Critical Care, Pain and Palliative Medicine, Department of Onco-Anaesthesiology and Palliative Medicine, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi - 110 029, India. E-mail: drrgarg@ 123456hotmail.com
                Article
                IJA-64-107
                10.4103/ija.IJA_498_20
                7293372
                32773848
                42a811a2-cc0b-4128-92d4-f6e6028ec586
                Copyright: © 2020 Indian Journal of Anaesthesia

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 03 May 2020
                : 09 May 2020
                : 13 May 2020
                Categories
                Special Article

                Anesthesiology & Pain management
                airway,coronavirus,covid-19,operation room,pandemic,personal protective equipment,sars-cov-2

                Comments

                Comment on this article