4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes.

      Nano Letters
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Co-assembly of two types of nanocrystals (NCs) into binary NC superlattices (BNSLs) provides a solution-based, inexpensive way to create novel metamaterials with rationally designed properties. The fundamental challenge is to probe and understand the nature and extent of complex interparticle interactions present in BNSLs, which can lead to collective properties that differ from their dispersed constituents or phase-separated counterparts. Here, we report the growth and magnetic characterization of large-area (∼1 cm(2)) BNSL membranes self-assembled from distinct magnetic NCs at the liquid-air interface. The resulting BNSL membranes exhibit a single-phase-like magnetization alignment process, which is not observed in the phase-separated NC mixtures having the same stoichiometry. This single-phase-like magnetic behavior is attributed to the collective interparticle dipolar interactions between two NC components in BNSLs, corroborated by calculation of the random dipolar fields as well as Monte Carlo simulation. The collective magnetic properties are demonstrated in magnetic BNSL membranes having different structures (stoichiometry) and different NC combinations.

          Related collections

          Author and article information

          Journal
          21070007
          10.1021/nl103568q

          Comments

          Comment on this article