11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Maternal immune activation and abnormal brain development across CNS disorders

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.

          Related collections

          Most cited references 171

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database.

          The past decade has witnessed hundreds of reports declaring or refuting genetic association with putative Alzheimer disease susceptibility genes. This wealth of information has become increasingly difficult to follow, much less interpret. We have created a publicly available, continuously updated database that comprehensively catalogs all genetic association studies in the field of Alzheimer disease (http://www.alzgene.org). We performed systematic meta-analyses for each polymorphism with available genotype data in at least three case-control samples. In addition to identifying the epsilon4 allele of APOE and related effects, we pinpointed over a dozen potential Alzheimer disease susceptibility genes (ACE, CHRNB2, CST3, ESR1, GAPDHS, IDE, MTHFR, NCSTN, PRNP, PSEN1, TF, TFAM and TNF) with statistically significant allelic summary odds ratios (ranging from 1.11-1.38 for risk alleles and 0.92-0.67 for protective alleles). Our database provides a powerful tool for deciphering the genetics of Alzheimer disease, and it serves as a potential model for tracking the most viable gene candidates in other genetically complex diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects.

            Schizophrenia is associated with immune system dysfunction, including aberrant cytokine levels. We performed a meta-analysis of these associations, considering effects of clinical status and antipsychotic treatment following an acute illness exacerbation. We identified articles by searching PubMed, PsychInfo, and Institute for Scientific Information and the reference lists of identified studies. Forty studies met the inclusion criteria. Effect sizes were similar for studies of acutely relapsed inpatients (AR) and first-episode psychosis (FEP). Interleukin (IL)-1β, IL-6, and transforming growth factor-β (TGF-β) appeared to be state markers, as they were increased in AR and FEP (p < .001 for each) and normalized with antipsychotic treatment (p < .001, p = .008, and p = .005, respectively). In contrast, IL-12, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and soluble IL-2 receptor (sIL-2R) appeared to be trait markers, as levels remained elevated in acute exacerbations and following antipsychotic treatment. There was no difference in IL-6 levels between stable medicated outpatients and control subjects (p = .69). In the cerebrospinal fluid, IL-1β was significantly decreased in schizophrenia versus controls (p = .01). Similar effect sizes in AR and FEP suggest that the association between cytokine abnormalities and acute exacerbations of schizophrenia is independent of antipsychotic medications. While some cytokines (IL-1β, IL-6, and TGF-β) may be state markers for acute exacerbations, others (IL-12, IFN-γ, TNF-α, and sIL-2R) may be trait markers. Although these results could provide the basis for future hypothesis testing, most studies did not control for potential confounding factors such as body mass index and smoking. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-inflammatory therapy in chronic disease: challenges and opportunities.

              A number of widespread and devastating chronic diseases, including atherosclerosis, type 2 diabetes, and Alzheimer's disease, have a pathophysiologically important inflammatory component. In these diseases, the precise identity of the inflammatory stimulus is often unknown and, if known, is difficult to remove. Thus, there is interest in therapeutically targeting the inflammatory response. Although there has been success with anti-inflammatory therapy in chronic diseases triggered by primary inflammation dysregulation or autoimmunity, there are considerable limitations. In particular, the inflammatory response is critical for survival. As a result, redundancy, compensatory pathways, and necessity narrow the risk:benefit ratio of anti-inflammatory drugs. However, new advances in understanding inflammatory signaling and its links to resolution pathways, together with new drug development, offer promise in this area of translational biomedical research.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neurology
                Nat Rev Neurol
                Springer Science and Business Media LLC
                1759-4758
                1759-4766
                November 2014
                October 14 2014
                November 2014
                : 10
                : 11
                : 643-660
                Article
                10.1038/nrneurol.2014.187
                25311587
                © 2014

                Comments

                Comment on this article