6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      CD55 Deficiency, Early-Onset Protein-Losing Enteropathy, and Thrombosis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies of monogenic gastrointestinal diseases have revealed molecular pathways critical to gut homeostasis and enabled the development of targeted therapies.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Atypical hemolytic-uremic syndrome.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetics of Inflammatory Bowel Diseases.

            In this review, we provide an update on genome-wide association studies (GWAS) in inflammatory bowel disease (IBD). In addition, we summarize progress in defining the functional consequences of associated alleles for coding and noncoding genetic variation. In the small minority of loci where major association signals correspond to nonsynonymous variation, we summarize studies defining their functional effects and implications for therapeutic targeting. Importantly, the large majority of GWAS-associated loci involve noncoding variation, many of which modulate levels of gene expression. Recent expression quantitative trait loci (eQTL) studies have established that the expression of most human genes is regulated by noncoding genetic variations. Significant advances in defining the epigenetic landscape have demonstrated that IBD GWAS signals are highly enriched within cell-specific active enhancer marks. Studies in European ancestry populations have dominated the landscape of IBD genetics studies, but increasingly, studies in Asian and African-American populations are being reported. Common variation accounts for only a modest fraction of the predicted heritability and the role of rare genetic variation of higher effects (ie, odds ratios markedly deviating from 1) is increasingly being identified through sequencing efforts. These sequencing studies have been particularly productive in more severe very early onset cases. A major challenge in IBD genetics will be harnessing the vast array of genetic discovery for clinical utility through emerging precision medical initiatives. In this article, we discuss the rapidly evolving area of direct-to-consumer genetic testing and the current utility of clinical exome sequencing, especially in very early onset, severe IBD cases. We summarize recent progress in the pharmacogenetics of IBD with respect to partitioning patient responses to anti-TNF and thiopurine therapies. Highly collaborative studies across research centers and across subspecialties and disciplines will be required to fully realize the promise of genetic discovery in IBD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complement activation, regulation, and molecular basis for complement-related diseases.

              The complement system is an essential element of the innate immune response that becomes activated upon recognition of molecular patterns associated with microorganisms, abnormal host cells, and modified molecules in the extracellular environment. The resulting proteolytic cascade tags the complement activator for elimination and elicits a pro-inflammatory response leading to recruitment and activation of immune cells from both the innate and adaptive branches of the immune system. Through these activities, complement functions in the first line of defense against pathogens but also contributes significantly to the maintenance of homeostasis and prevention of autoimmunity. Activation of complement and the subsequent biological responses occur primarily in the extracellular environment. However, recent studies have demonstrated autocrine signaling by complement activation in intracellular vesicles, while the presence of a cytoplasmic receptor serves to detect complement-opsonized intracellular pathogens. Furthermore, breakthroughs in both functional and structural studies now make it possible to describe many of the intricate molecular mechanisms underlying complement activation and the subsequent downstream events, as well as its cross talk with, for example, signaling pathways, the coagulation system, and adaptive immunity. We present an integrated and updated view of complement based on structural and functional data and describe the new roles attributed to complement. Finally, we discuss how the structural and mechanistic understanding of the complement system rationalizes the genetic defects conferring uncontrolled activation or other undesirable effects of complement.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                New England Journal of Medicine (NEJM/MMS)
                0028-4793
                1533-4406
                July 06 2017
                July 06 2017
                : 377
                : 1
                : 52-61
                Article
                10.1056/NEJMoa1615887
                6690356
                28657829
                42cc8158-fe81-4c73-b894-d7ec070b1e13
                © 2017
                History

                Comments

                Comment on this article