6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          3D Fe, Co, N-functionalized carbon nanotubes grown on carbon foam were fabricated and the hybrid exhibited high ORR electrocatalytic performance.

          Abstract

          Designing and manipulating advanced oxygen reduction reaction (ORR) electrocatalysts are of critical importance for the widespread application of fuel cells. In this work, we report a highly versatile and one-pot pyrolysis route for the mass production of a novel three-dimensional N, Fe, Co-functionalized carbon nanotubes rigidly grown on N-doped carbon foams (3D FeCoN–CNTs/NCFs) serving as a noble-metal free catalyst for the oxygen reduction reaction (ORR). Different from the previously reported carbon materials, in the present 3D porous structure, the N, Fe, Co-doped carbon nanotubes are rigidly grown on the skeleton of 3D nitrogen-doped carbon foams (NCFs), showing a high electrochemical stability. Moreover, due to the synergistic effect of the Fe/Co and the N species with the formation of Fe/Co–N x complexes in the 3D hybrid carbon material and the multiple active sites on the porous structure, the 3D hybrid displayed superior catalytic performance for ORR, high operation stability and strong methanol/CO crossover resistance in alkaline medium. The stable porous structure and the excellent catalytic performance make the 3D FeCoN–CNTs/NCFs a promising non-precious-metal cathodic electrocatalyst for fuel cells.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Materials for fuel-cell technologies.

          Fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel-cell technology can gain a significant share of the electrical power market, important issues have to be addressed. These issues include optimal choice of fuel, and the development of alternative materials in the fuel-cell stack. Present fuel-cell prototypes often use materials selected more than 25 years ago. Commercialization aspects, including cost and durability, have revealed inadequacies in some of these materials. Here we summarize recent progress in the search and development of innovative alternative materials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt.

            The prohibitive cost of platinum for catalyzing the cathodic oxygen reduction reaction (ORR) has hampered the widespread use of polymer electrolyte fuel cells. We describe a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power. The approach uses polyaniline as a precursor to a carbon-nitrogen template for high-temperature synthesis of catalysts incorporating iron and cobalt. The most active materials in the group catalyze the ORR at potentials within ~60 millivolts of that delivered by state-of-the-art carbon-supported platinum, combining their high activity with remarkable performance stability for non-precious metal catalysts (700 hours at a fuel cell voltage of 0.4 volts) as well as excellent four-electron selectivity (hydrogen peroxide yield <1.0%).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction

              Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we report a hybrid material consisting of Co₃O₄ nanocrystals grown on reduced graphene oxide as a high-performance bi-functional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although Co₃O₄ or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen doping of graphene. The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co₃O₄ and graphene.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2015
                2015
                : 3
                : 7
                : 3559-3567
                Affiliations
                [1 ]State Key Laboratory of Electroanalytical Chemistry
                [2 ]Changchun Institute of Applied Chemistry
                [3 ]Chinese Academy of Sciences
                [4 ]Changchun 130022
                [5 ]China
                Article
                10.1039/C4TA05735J
                42d1684e-ad81-4154-bcbe-9e052b26101b
                © 2015
                History

                Comments

                Comment on this article