1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Heat‐Free Biomimetic Metal Molding on Soft Substrates

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids.

          Superhydrophobic and superoleophobic surfaces have so far been made by roughening a hydrophobic material. However, no surfaces were able to repel extremely-low-energy liquids such as fluorinated solvents, which completely wet even the most hydrophobic material. We show how roughness alone, if made of a specific doubly reentrant structure that enables very low liquid-solid contact fraction, can render the surface of any material superrepellent. Starting from a completely wettable material (silica), we micro- and nanostructure its surface to make it superomniphobic and bounce off all available liquids, including perfluorohexane. The same superomniphobicity is further confirmed with identical surfaces of a metal and a polymer. Free of any hydrophobic coating, the superomniphobic silica surface also withstands temperatures over 1000°C and resists biofouling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improving the density of jammed disordered packings using ellipsoids.

            A. Donev (2004)
            Packing problems, such as how densely objects can fill a volume, are among the most ancient and persistent problems in mathematics and science. For equal spheres, it has only recently been proved that the face-centered cubic lattice has the highest possible packing fraction phi=pi/18 approximately 0.74. It is also well known that certain random (amorphous) jammed packings have phi approximately 0.64. Here, we show experimentally and with a new simulation algorithm that ellipsoids can randomly pack more densely-up to phi= 0.68 to 0.71 for spheroids with an aspect ratio close to that of M&M's Candies-and even approach phi approximately 0.74 for ellipsoids with other aspect ratios. We suggest that the higher density is directly related to the higher number of degrees of freedom per particle and thus the larger number of particle contacts required to mechanically stabilize the packing. We measured the number of contacts per particle Z approximately 10 for our spheroids, as compared to Z approximately 6 for spheres. Our results have implications for a broad range of scientific disciplines, including the properties of granular media and ceramics, glass formation, and discrete geometry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomimetics: lessons from nature--an overview.

              Nature has developed materials, objects and processes that function from the macroscale to the nanoscale. These have gone through evolution over 3.8 Gyr. The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices and processes. Properties of biological materials and surfaces result from a complex interplay between surface morphology and physical and chemical properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature to provide properties of interest. Molecular-scale devices, superhydrophobicity, self-cleaning, drag reduction in fluid flow, energy conversion and conservation, high adhesion, reversible adhesion, aerodynamic lift, materials and fibres with high mechanical strength, biological self-assembly, antireflection, structural coloration, thermal insulation, self-healing and sensory-aid mechanisms are some of the examples found in nature that are of commercial interest. This paper provides a broad overview of the various objects and processes of interest found in nature and applications under development or available in the marketplace.
                Bookmark

                Author and article information

                Contributors
                Journal
                Angewandte Chemie
                Angew. Chem.
                Wiley
                0044-8249
                1521-3757
                August 18 2020
                Affiliations
                [1 ]Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
                [2 ]Micro-Electronics Research Centre Ames IA 50014 USA
                [3 ]Iowa State UniversityDepartment of Electrical and Computer Engineering Ames IA 50014 USA
                Article
                10.1002/ange.202008621
                42d2b884-4fca-405f-8573-387b39557c9b
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article