10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tannic Acid-Based Multifunctional Hydrogels with Facile Adjustable Adhesion and Cohesion Contributed by Polyphenol Supramolecular Chemistry

      research-article
      , , ,
      ACS Omega
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adhesiveness of hydrogels depends on the balance and synergy of their cohesion and adhesion. However, it is a challenge to fabricate catechol-based hydrogels with high adhesiveness because the required condition for cohesion and adhesion of these hydrogels is in conflict with each other: strong cohesion (gelation) requires a weak basic condition, whereas strong adhesion requires an acidic condition. Here, we demonstrated that by utilizing polyphenol supramolecular chemistry, the coexistence of strong cohesion and adhesion can be achieved in a hydrogel via the one-pot method. Poly(dimethyl diallyl ammonium chloride)/tannic acid (PDDA/TA) hydrogel has been studied as a proof of concept. Compared with catechol moieties that covalently grafted on polymer chains, TA can bring high density of pyrogallol/catechol functional groups for polymers via a noncovalent pathway, as well as high acidity in the system. As a result, the cohesion of the hydrogel is enhanced significantly, the highest storage moduli can reach up to ca. 0.15 MPa; besides, the high acidity of the hydrogel prevents pyrogallol/catechol groups from oxidation and guarantees strong adhesion; thus, the hydrogel can adhere to diverse substrates steadily, including tissues, glass, metals, and plastic. Moreover, because of the adjustable adhesiveness via changing the pH, the PDDA/TA hydrogel becomes a unique system with patternable adhesiveness. In addition, the hydrogel has rapid self-healing and high ionic conductivity (∼4.3 S m –1). This study demonstrates that utilizing polyphenol chemistry in the construction of hydrogels opens a new path toward multifunctional hydrogels with improved properties.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization.

          Adhesive hydrogels are attractive biomaterials for various applications, such as electronic skin, wound dressing, and wearable devices. However, fabricating a hydrogel with both adequate adhesiveness and excellent mechanical properties remains a challenge. Inspired by the adhesion mechanism of mussels, we used a two-step process to develop an adhesive and tough polydopamine-clay-polyacrylamide (PDA-clay-PAM) hydrogel. Dopamine was intercalated into clay nanosheets and limitedly oxidized between the layers, resulting in PDA-intercalated clay nanosheets containing free catechol groups. Acrylamide monomers were then added and in situ polymerized to form the hydrogel. Unlike previous single-use adhesive hydrogels, our hydrogel showed repeatable and durable adhesiveness. It adhered directly on human skin without causing an inflammatory response and was easily removed without causing damage. The adhesiveness of this hydrogel was attributed to the presence of enough free catechol groups in the hydrogel, which were created by controlling the oxidation process of the PDA in the confined nanolayers of clay. This mimicked the adhesion mechanism of the mussels, which maintain a high concentration of catechol groups in the confined nanospace of their byssal plaque. The hydrogel also displayed superior toughness, which resulted from nanoreinforcement by clay and PDA-induced cooperative interactions with the hydrogel networks. Moreover, the hydrogel favored cell attachment and proliferation, owning to the high cell affinity of PDA. Rat full-thickness skin defect experiments demonstrated that the hydrogel was an excellent dressing. This free-standing, adhesive, tough, and biocompatible hydrogel may be more convenient for surgical applications than adhesives that involve in situ gelation and extra agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Iron-clad fibers: a metal-based biological strategy for hard flexible coatings.

            The extensible byssal threads of marine mussels are shielded from abrasion in wave-swept habitats by an outer cuticle that is largely proteinaceous and approximately fivefold harder than the thread core. Threads from several species exhibit granular cuticles containing a protein that is rich in the catecholic amino acid 3,4-dihydroxyphenylalanine (dopa) as well as inorganic ions, notably Fe3+. Granular cuticles exhibit a remarkable combination of high hardness and high extensibility. We explored byssus cuticle chemistry by means of in situ resonance Raman spectroscopy and demonstrated that the cuticle is a polymeric scaffold stabilized by catecholato-iron chelate complexes having an unusual clustered distribution. Consistent with byssal cuticle chemistry and mechanics, we present a model in which dense cross-linking in the granules provides hardness, whereas the less cross-linked matrix provides extensibility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein

              ABSTRACT Marine mussels secret protein‐based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhesion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol‐functionalized polymers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate‐forming adhesives, mechanically improved nano‐ and micro‐composite adhesive hydrogels, as well as smart and self‐healing materials. Finally, we review the applications of catechol‐functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 9–33
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                12 October 2017
                31 October 2017
                : 2
                : 10
                : 6668-6676
                Affiliations
                Department of Chemistry, Renmin University of China , No. 59 Zhongguancun Street, Haidian District, Beijing 100872, P. R. China
                Author notes
                [* ]E-mail: jinzx@ 123456ruc.edu.cn (Z.J.).
                Article
                10.1021/acsomega.7b01067
                6045341
                30023527
                42e22968-2645-4464-9326-d870e3baff12
                Copyright © 2017 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 25 July 2017
                : 05 September 2017
                Categories
                Article
                Custom metadata
                ao7b01067
                ao-2017-01067z

                Comments

                Comment on this article