93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optical sinc-shaped Nyquist pulses of exceptional quality

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sinc-shaped Nyquist pulses possess a rectangular spectrum, enabling data to be encoded in a minimum spectral bandwidth and satisfying by essence the Nyquist criterion of zero inter-symbol interference (ISI). This property makes them very attractive for communication systems since data transmission rates can be maximized while the bandwidth usage is minimized. However, most of the pulse-shaping methods reported so far have remained rather complex and none has led to ideal sinc pulses. Here a method to produce sinc-shaped Nyquist pulses of very high quality is proposed based on the direct synthesis of a rectangular-shaped and phase-locked frequency comb. The method is highly flexible and can be easily integrated in communication systems, potentially offering a substantial increase in data transmission rates. Further, the high quality and wide tunability of the reported sinc-shaped pulses can also bring benefits to many other fields, such as microwave photonics, light storage and all-optical sampling.

          Abstract

          The rectangular spectral shape of sinc Nyquist pulses are ideal for data transmission as they make optimal use of the available frequency spectrum. Here Soto et al. develop a scheme for the optical generation of sinc-shaped Nyquist pulses with very high quality, based on the direct synthesis of rectangular, phase-locked frequency combs.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Microresonator-based optical frequency combs.

          The series of precisely spaced, sharp spectral lines that form an optical frequency comb is enabling unprecedented measurement capabilities and new applications in a wide range of topics that include precision spectroscopy, atomic clocks, ultracold gases, and molecular fingerprinting. A new optical frequency comb generation principle has emerged that uses parametric frequency conversion in high resonance quality factor (Q) microresonators. This approach provides access to high repetition rates in the range of 10 to 1000 gigahertz through compact, chip-scale integration, permitting an increased number of comb applications, such as in astronomy, microwave photonics, or telecommunications. We review this emerging area and discuss opportunities that it presents for novel technologies as well as for fundamental science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Optical frequency comb generation from a monolithic microresonator

            Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultra-violet and can link an unknown optical frequency to a radio or microwave frequency reference. Since their inception frequency combs have triggered major advances in optical frequency metrology and precision measurements and in applications such as broadband laser-based gas sensing8 and molecular fingerprinting. Early work generated frequency combs by intra-cavity phase modulation while to date frequency combs are generated utilizing the comb-like mode structure of mode-locked lasers, whose repetition rate and carrier envelope phase can be stabilized. Here, we report an entirely novel approach in which equally spaced frequency markers are generated from a continuous wave (CW) pump laser of a known frequency interacting with the modes of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The intrinsically broadband nature of parametric gain enables the generation of discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without relying on any external spectral broadening. Optical-heterodyne-based measurements reveal that cascaded parametric interactions give rise to an optical frequency comb, overcoming passive cavity dispersion. The uniformity of the mode spacing has been verified to within a relative experimental precision of 7.3*10(-18).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Photonic analog-to-digital converters.

              This paper reviews over 30 years of work on photonic analog-to-digital converters. The review is limited to systems in which the input is a radio-frequency (RF) signal in the electronic domain and the output is a digital version of that signal also in the electronic domain, and thus the review excludes photonic systems directed towards digitizing images or optical communication signals. The state of the art in electronic ADCs, basic properties of ADCs and properties of analog optical links, which are found in many photonic ADCs, are reviewed as background information for understanding photonic ADCs. Then four classes of photonic ADCs are reviewed: 1) photonic assisted ADC in which a photonic device is added to an electronic ADC to improve performance, 2) photonic sampling and electronic quantizing ADC, 3) electronic sampling and photonic quantizing ADC, and 4) photonic sampling and quantizing ADC. It is noted, however, that all 4 classes of "photonic ADC" require some electronic sampling and quantization. After reviewing all known photonic ADCs in the four classes, the review concludes with a discussion of the potential for photonic ADCs in the future.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                04 December 2013
                : 4
                : 2898
                Affiliations
                [1 ]EPFL Swiss Federal Institute of Technology, Group for Fibre Optics , SCI-STI-LT, Station 11, CH-1015 Lausanne, Switzerland
                [2 ]EPFL Swiss Federal Institute of Technology, Photonic Systems Laboratory , STI-IEL-PHOSL, Station 11, CH-1015 Lausanne, Switzerland
                [3 ]Present address: Institut für Hochfrequenztechnik, Hochschule für Telekommunikation Leipzig, Gustav-Freytag-Straße 43-45, 04277 Leipzig, Germany
                Author notes
                Article
                ncomms3898
                10.1038/ncomms3898
                3863974
                24301610
                42e76194-559d-46e4-b517-8953ecad381b
                Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 27 May 2013
                : 07 November 2013
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article