59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Stoichiometry Representation on Simulation of Genotype-Phenotype Relationships in Metabolic Networks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predicting the active metabolic state under specific environmental conditions. The objective function to be used in such optimization algorithms is directly linked with the biological hypothesis underlying the model and therefore it is one of the most relevant parameters for successful modeling. Although linear combination of selected fluxes is widely used for formulating metabolic objective functions, we show that the resulting optimization problem is sensitive towards stoichiometry representation of the metabolic network. This undesirable sensitivity leads to different simulation results when using numerically different but biochemically equivalent stoichiometry representations and thereby makes biological interpretation intrinsically subjective and ambiguous. We hereby propose a new method, Minimization of Metabolites Balance (MiMBl), which decouples the artifacts of stoichiometry representation from the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation independent algorithms is fundamental for unambiguously linking modeling results with biological interpretation. For example, MiMBl allowed us to expand the scope of metabolic modeling in elucidating the mechanistic basis of several genetic interactions in Saccharomyces cerevisiae.

          Author Summary

          One of the challenging tasks in systems biology is to quantitatively predict the metabolic behavior of the cell under given genetic and environmental constraints. To this end, genome-scale metabolic reconstructions and simulation tools are indispensable. The choice of the objective function to be used for simulating genome-scale metabolic models is dependent on the biological context and one of the most relevant parameters for successful modeling. Formulation of the intended objective function often requires the use of multiple fluxes, e.g. the sum of fluxes through ATP-producing reactions. We demonstrate that the existing tools confound biological interpretation of the simulations due to undesired dependence on the representation of stoichiometry and propose a new tool – Minimization of Metabolites Balance (MiMBl). MiMBl allows casting of the desired biological objective functions into linear optimization models and gives consistent simulation results when using numerically different but biochemically equivalent stoichiometry representations. We demonstrate relevance of MiMBl for addressing biological questions through improved predictions of genetic interactions within the yeast metabolic network. Genetic interactions imply functional relationship between the genes and therefore allow assessing different hypotheses for the underlying biological principles. MiMBl explains several of the genetic interactions as outcome of flux re-routing for minimal metabolite turnover adjustments.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The effects of alternate optimal solutions in constraint-based genome-scale metabolic models.

          Genome-scale constraint-based models of several organisms have now been constructed and are being used for model driven research. A key issue that may arise in the use of such models is the existence of alternate optimal solutions wherein the same maximal objective (e.g., growth rate) can be achieved through different flux distributions. Herein, we investigate the effects that alternate optimal solutions may have on the predicted range of flux values calculated using currently practiced linear (LP) and quadratic programming (QP) methods. An efficient LP-based strategy is described to calculate the range of flux variability that can be present in order to achieve optimal as well as suboptimal objective states. Sample results are provided for growth predictions of E. coli using glucose, acetate, and lactate as carbon substrates. These results demonstrate the extent of flux variability to be highly dependent on environmental conditions and network composition. In addition we examined the impact of alternate optima for growth under gene knockout conditions as calculated using QP-based methods. It was observed that calculations using QP-based methods can show significant variation in growth rate if the flux variability among alternate optima is high. The underlying biological significance and general source of such flux variability is further investigated through the identification of redundancies in the network (equivalent reaction sets) that lead to alternate solutions. Collectively, these results illustrate the variability inherent in metabolic flux distributions and the possible implications of this heterogeneity for constraint-based modeling approaches. These methods also provide an efficient and robust method to calculate the range of flux distributions that can be derived from quantitative fermentation data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of optimality in natural and perturbed metabolic networks.

            An important goal of whole-cell computational modeling is to integrate detailed biochemical information with biological intuition to produce testable predictions. Based on the premise that prokaryotes such as Escherichia coli have maximized their growth performance along evolution, flux balance analysis (FBA) predicts metabolic flux distributions at steady state by using linear programming. Corroborating earlier results, we show that recent intracellular flux data for wild-type E. coli JM101 display excellent agreement with FBA predictions. Although the assumption of optimality for a wild-type bacterium is justifiable, the same argument may not be valid for genetically engineered knockouts or other bacterial strains that were not exposed to long-term evolutionary pressure. We address this point by introducing the method of minimization of metabolic adjustment (MOMA), whereby we test the hypothesis that knockout metabolic fluxes undergo a minimal redistribution with respect to the flux configuration of the wild type. MOMA employs quadratic programming to identify a point in flux space, which is closest to the wild-type point, compatibly with the gene deletion constraint. Comparing MOMA and FBA predictions to experimental flux data for E. coli pyruvate kinase mutant PB25, we find that MOMA displays a significantly higher correlation than FBA. Our method is further supported by experimental data for E. coli knockout growth rates. It can therefore be used for predicting the behavior of perturbed metabolic networks, whose growth performance is in general suboptimal. MOMA and its possible future extensions may be useful in understanding the evolutionary optimization of metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Applications of genome-scale metabolic reconstructions

              The availability and utility of genome-scale metabolic reconstructions have exploded since the first genome-scale reconstruction was published a decade ago. Reconstructions have now been built for a wide variety of organisms, and have been used toward five major ends: (1) contextualization of high-throughput data, (2) guidance of metabolic engineering, (3) directing hypothesis-driven discovery, (4) interrogation of multi-species relationships, and (5) network property discovery. In this review, we examine the many uses and future directions of genome-scale metabolic reconstructions, and we highlight trends and opportunities in the field that will make the greatest impact on many fields of biology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                November 2012
                November 2012
                1 November 2012
                : 8
                : 11
                : e1002758
                Affiliations
                [1 ]Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
                [2 ]Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
                [3 ]Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
                University of Virginia, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KRP ARB. Performed the experiments: ARB SA. Analyzed the data: ARB KRP CDM. Contributed reagents/materials/analysis tools: ARB SA KRP CDM. Wrote the paper: ARB KRP.

                Article
                PCOMPBIOL-D-12-00347
                10.1371/journal.pcbi.1002758
                3486866
                23133362
                42e7c3b9-423d-4a25-859f-9d016ac2fdbd
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 March 2012
                : 11 September 2012
                Page count
                Pages: 12
                Funding
                ARB acknowledge PhD research grant from Fundação para a Ciência e Tecnologia (ref. SFRH/BD 579/41230/2007). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Metabolic Networks
                Systems Biology
                Model Organisms
                Yeast and Fungal Models
                Saccharomyces Cerevisiae

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article