46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurophysiological and anatomical studies identify melanopsin expressing retinal ganglion cells (mRGCs) as a major source of information in the mouse visual system.

          Abstract

          Photoreception in the mammalian retina is not restricted to rods and cones but extends to a subset of retinal ganglion cells expressing the photopigment melanopsin (mRGCs). These mRGCs are known to drive such reflex light responses as circadian photoentrainment and pupillomotor movements. By contrast, until now there has been no direct assessment of their contribution to conventional visual pathways. Here, we address this deficit. Using new reporter lines, we show that mRGC projections are much more extensive than previously thought and extend across the dorsal lateral geniculate nucleus (dLGN), origin of thalamo-cortical projection neurons. We continue to show that this input supports extensive physiological light responses in the dLGN and visual cortex in mice lacking rods+cones (a model of advanced retinal degeneration). Moreover, using chromatic stimuli to isolate melanopsin-derived responses in mice with an intact visual system, we reveal strong melanopsin input to the ∼40% of neurons in the LGN that show sustained activation to a light step. We demonstrate that this melanopsin input supports irradiance-dependent increases in the firing rate of these neurons. The implication that melanopsin is required to accurately encode stimulus irradiance is confirmed using melanopsin knockout mice. Our data establish melanopsin-based photoreception as a significant source of sensory input to the thalamo-cortical visual system, providing unique irradiance information and allowing visual responses to be retained even in the absence of rods+cones. These findings identify mRGCs as a potential origin for aspects of visual perception and indicate that they may support vision in people suffering retinal degeneration.

          Author Summary

          The ability to convert light into electrical signals in the mammalian retina has traditionally been thought to occur through only two types of photoreceptors, the rods and cones. However, this ability also extends to a small number of neurons expressing the protein melanopsin. To date these melanopsin retinal ganglion cells (mRGCs) have been thought to act as photoreceptors primarily for those brain regions regulating subconscious responses to ambient light, such as pupil size. In this study, we provide evidence that mRGCs also contribute extensively to conventional visual pathways. We use a newly developed strategy to characterize the brain regions to which these cells project and then directly monitor visually evoked neural activity in these target regions. We find that mRGCs allow the mouse visual system to faithfully encode ambient illumination over at least a million-fold range and to continue to show light responses even in the absence of all rods and cones. These data reveal a new role for mRGCs during normal vision and suggest that mRGCs could make a significant contribution to assessing brightness and supporting vision even in people with advanced retinal degeneration.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN.

          Human vision starts with the activation of rod photoreceptors in dim light and short (S)-, medium (M)-, and long (L)- wavelength-sensitive cone photoreceptors in daylight. Recently a parallel, non-rod, non-cone photoreceptive pathway, arising from a population of retinal ganglion cells, was discovered in nocturnal rodents. These ganglion cells express the putative photopigment melanopsin and by signalling gross changes in light intensity serve the subconscious, 'non-image-forming' functions of circadian photoentrainment and pupil constriction. Here we show an anatomically distinct population of 'giant', melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field. The intrinsic, rod and (L + M) cone-derived light responses combine in these giant cells to signal irradiance over the full dynamic range of human vision. In accordance with cone-based colour opponency, the giant cells project to the lateral geniculate nucleus, the thalamic relay to primary visual cortex. Thus, in the diurnal trichromatic primate, 'non-image-forming' and conventional 'image-forming' retinal pathways are merged, and the melanopsin-based signal might contribute to conscious visual perception.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice.

            In the mammalian retina, a small subset of retinal ganglion cells (RGCs) are intrinsically photosensitive, express the opsin-like protein melanopsin, and project to brain nuclei involved in non-image-forming visual functions such as pupillary light reflex and circadian photoentrainment. We report that in mice with the melanopsin gene ablated, RGCs retrograde-labeled from the suprachiasmatic nuclei were no longer intrinsically photosensitive, although their number, morphology, and projections were unchanged. These animals showed a pupillary light reflex indistinguishable from that of the wild type at low irradiances, but at high irradiances the reflex was incomplete, a pattern that suggests that the melanopsin-associated system and the classical rod/cone system are complementary in function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melanopsin is required for non-image-forming photic responses in blind mice.

              Although mice lacking rod and cone photoreceptors are blind, they retain many eye-mediated responses to light, possibly through photosensitive retinal ganglion cells. These cells express melanopsin, a photopigment that confers this photosensitivity. Mice lacking melanopsin still retain nonvisual photoreception, suggesting that rods and cones could operate in this capacity. We observed that mice with both outer-retinal degeneration and a deficiency in melanopsin exhibited complete loss of photoentrainment of the circadian oscillator, pupillary light responses, photic suppression of arylalkylamine-N-acetyltransferase transcript, and acute suppression of locomotor activity by light. This indicates the importance of both nonvisual and classical visual photoreceptor systems for nonvisual photic responses in mammals.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                December 2010
                December 2010
                7 December 2010
                : 8
                : 12
                : e1000558
                Affiliations
                [1 ]Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
                [2 ]Institute of Ophthalmology, University College London, London, United Kingdom
                [3 ]The Salk Institute for Biological Studies, La Jolla, California, United States of America
                University of Washington, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: TMB CG MH SP RJL. Performed the experiments: TMB CG MH SRK MS. Analyzed the data: TMB CG MH SP. Contributed reagents/materials/analysis tools: PJC JG. Wrote the paper: TMB HDP RJL.

                Article
                10-PLBI-RA-7649R3
                10.1371/journal.pbio.1000558
                2998442
                21151887
                43235958-520b-4098-869e-9b0c9ffa8afd
                Brown et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 May 2010
                : 27 October 2010
                Page count
                Pages: 14
                Categories
                Research Article
                Neuroscience/Sensory Systems
                Ophthalmology/Retinal Disorders
                Neuroscience/Natural and Synthetic Vision

                Life sciences
                Life sciences

                Comments

                Comment on this article