44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Classical ctxB in Vibrio cholerae O1, Kolkata, India

      letter

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the Editor: Among the 206 serogroups of Vibrio cholerae, O1 and O139 are associated with epidemic cholera. Serogroup O1 is classified into 2 biotypes, classical and El Tor. Conventionally, the 2 biotypes can be differentiated on the basis of a set of phenotypic traits. Comparative genomic analysis has shown variations in different genes between these biotypes ( 1 ). Cholera toxin (CT), the major toxin responsible for the disease cholera, has 2 epitypes or immunologic forms, CT1 and CT2 ( 2 ). Another classification recognizes 3 genotypes on the basis of the ctxB gene sequence variation ( 3 ). In the past few years, a new emerging form of V. cholerae O1, which possesses traits of both classical and El Tor biotypes, has been isolated in Bangladesh ( 4 , 5 ), Mozambique ( 6 ), Vietnam, Hong Kong, Japan, and Zambia ( 7 ). These strains were variously labeled as Matlab variants, hybrids, or altered El Tor strains. Our study analyzed, in chronological order, strains of V. cholerae O1 that were isolated over 17 years (1989–2005). We used strains isolated during diarrhea surveillance conducted at the Infectious Diseases Hospital, Kolkata (Calcutta), to determine precisely when the hybrid strains appeared in this region. A total of 171 strains of V. cholerae O1, which were selected to cover different months of each year, were included in this study, along with 2 reference strains for classical and El Tor biotypes. The V. cholerae strains were confirmed serologically by slide agglutination using a specific polyvalent antiserum to V. cholerae O1. We focused on the ctxB gene. The strains were examined by mismatch amplification mutation assay (MAMA)–based PCR for detecting the ctxB allele; a common forward primer was used for 2 alleles, FW-Com (5′-ACTATCTTCAGCATATGCACATGG-3′); and 2 allele-specific primers, Re-cla (5′-cctggtacttctacttgaaacg-3′) and Re-elt (5′-CCTGGTACTTCTACTTGAAACA-3′), were used for classical and El Tor biotypes, respectively ( 8 ). Results of the MAMA-PCR are summarized in the Table. All of the 123 V. cholerae O1 strains from 1995 through 2005 yielded only the classical type of ctxB, which indicates that since 1995 the classical type has completely replaced the El Tor type ctxB (Table). To reconfirm our PCR-based results, we selected 25 representative strains for DNA sequencing of the ctxB gene. The deduced amino acid sequences were aligned with the CtxB sequences of reference strains N16961 (El Tor) and O395 (classical). The deduced amino acid sequences of all 25 strains were identical to those of the classical reference strain; histidine was at position 39 and threonine was at position 68. Thus, the results from DNA sequencing of the ctxB gene confirmed the MAMA-PCR results. Table Prevalence of different types of ctxB alleles among Vibrio cholerae O1 strains, Kolkata, India, 1989–2005 Year isolated No. strains tested No. alleles Classical ctxB El Tor ctxB Classical + El Tor ctxB 1989 6 0 6 0 1990 7 4 3 0 1991 10 8 0 2* 1992 10 4 5 1* 1993 6 4 2 0 1994 9 8 1 0 1995 23 23 0 0 1996 10 10 0 0 1997 10 10 0 0 1998 10 10 0 0 1999 10 10 0 0 2000 10 10 0 0 2001 10 10 0 0 2002 10 10 0 0 2003 10 10 0 0 2004 10 10 0 0 2005 10 10 0 0 *These strains carry the ctxB gene for El Tor as well as classical strains. Our results highlight a noteworthy event in the evolution of recent V. cholerae strains. Analysis of type ctxB that had been circulating in Kolkata for 17 years (1989–2005) showed that in 1989 only the El Tor allele of ctxB was present. Our results further indicate that classical type ctxB emerged in 1990, although El Tor type ctxB was still present in almost equal numbers during that year. During 1991, a unique event took place when the classical type became predominant, along with strains having both classical and El Tor type ctxB. In 1994, isolation of strains with El Tor ctxB became rare, and the major ctxB allele was of the classical type. V. cholerae O1 strains from 1995 onward were found to carry classical type ctxB, which totally replaced the El Tor type ctxB allele. Replacement of El Tor type ctxB by the classical allele has been reported in Bangladesh since 2001 ( 5 ), but this event seems to have occurred earlier in Kolkata. Perhaps the new type of El Tor strains arose when V. cholerae strains with typical seventh pandemic El Tor genetic background were replaced with strains having the ctxB gene, possibly driven by selective pressure to survive and adapt better in host intestines. Considering the increase in the global prevalence of cholera ( 9 ), the origin and spread of these new variants of V. cholerae strains should be tracked in the population by genome analysis. Finally, this study has described a brief period from February 1991 through December 1992 when El Tor strains had CTX prophages of both classical and El Tor types (data not shown), along with the ctxB of both biotypes. Notably, this period coincided with an unprecedented event in the history of cholera—the genesis of the O139 serogroup. After this serogroup reemerged in 1996, it harbored 2 types of CTX prophages, namely, El Tor and Calcutta ( 10 ). Furthermore, these strains with ctxB of both biotypes might also have had a pivotal role behind the emergence of El Tor strains with classical ctxB. Further studies are warranted to determine whether any distinct relationship exists between these overlapping events.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease.

          Historically, the first six recorded cholera pandemics occurred between 1817 and 1923 and were caused by Vibrio cholerae O1 serogroup strains of the classical biotype. Although strains of the El Tor biotype caused sporadic infections and cholera epidemics as early as 1910, it was not until 1961 that this biotype emerged to cause the 7th pandemic, eventually resulting in the global elimination of classical biotype strains as a cause of disease. The completed genome sequence of 7th pandemic El Tor O1 strain N16961 has provided an important tool to begin addressing questions about the evolution of V. cholerae as a human pathogen and environmental organism. To facilitate such studies, we constructed a V. cholerae genomic microarray that displays over 93% of the predicted genes of strain N16961 as spotted features. Hybridization of labeled genomic DNA from different strains to this microarray allowed us to compare the gene content of N16961 to that of other V. cholerae isolates. Surprisingly, the results reveal a high degree of conservation among the strains tested. However, genes unique to all pandemic strains as well as genes specific to 7th pandemic El Tor and related O139 serogroup strains were identified. These latter genes may encode gain-of-function traits specifically associated with displacement of the preexisting classical strains in South Asia and may also promote the establishment of endemic disease in previously cholera-free locations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh.

            The sixth pandemic of cholera and, presumably, the earlier pandemics were caused by the classical biotype of Vibrio cholerae O1, which was progressively replaced by the El Tor biotype representing the seventh cholera pandemic. Although the classical biotype of V. cholerae O1 is extinct, even in southern Bangladesh, the last of the niches where this biotype prevailed, we have identified new varieties of V. cholerae O1, of the El Tor biotype with attributes of the classical biotype, from hospitalized patients with acute diarrhea in Bangladesh. Twenty-four strains of V. cholerae O1 isolated between 1991 and 1994 from hospitalized patients with acute diarrhea in Matlab, a rural area of Bangladesh, were examined for the phenotypic and genotypic traits that distinguish the two biotypes of V. cholerae O1. Standard reference strains of V. cholerae O1 belonging to the classical and El Tor biotypes were used as controls in all of the tests. The phenotypic traits commonly used to distinguish between the El Tor and classical biotypes, including polymyxin B sensitivity, chicken cell agglutination, type of tcpA and rstR genes, and restriction patterns of conserved rRNA genes (ribotypes), differentiated the 24 strains of toxigenic V. cholerae O1 into three types designated the Matlab types. Although all of the strains belonged to ribotypes that have been previously found among El Tor vibrios, type I strains had more traits of the classical biotype while type II and III strains appeared to be more like the El Tor biotype but had some classical biotype properties. These results suggest that, although the classical and El Tor biotypes have different lineages, there are possible naturally occurring genetic hybrids between the classical and El Tor biotypes that can cause cholera and thus provide new insight into the epidemiology of cholera in Bangladesh. Furthermore, the existence of such novel strains may have implications for the development of a cholera vaccine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cholera due to altered El Tor strains of Vibrio cholerae O1 in Bangladesh.

              We determined the types of cholera toxin (CT) produced by a collection of 185 Vibrio cholerae O1 strains isolated in Bangladesh over the past 45 years. All of the El Tor strains of V. cholerae O1 isolated since 2001 produced CT of the classical biotype, while those isolated before 2001 produced CT of the El Tor biotype.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                January 2009
                : 15
                : 1
                : 131-132
                Affiliations
                [1]National Institute of Cholera and Enteric Diseases, Kolkata, India (A. Raychoudhuri, T. Patra, K. Ghosh, T. Ramamurthy, R.K. Nandy, G.B. Nair, A.K. Mukhopadhyay)
                [2]Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata (Y. Takeda)
                Author notes
                Address for correspondence: Asish K. Mukhopadhyay, National Institute of Cholera and Enteric Diseases, P-33, CIT Rd, Scheme XM, Beliaghata, Kolkata–700010, India; email: asish_mukhopadhyay@ 123456yahoo.com
                Article
                08-0543
                10.3201/eid1501.080543
                2660696
                19116078
                432728a7-b280-4fc3-9760-be7f74010455
                History
                Categories
                Letters to the Editor

                Infectious disease & Microbiology
                classical,ctxb,letter,el tor,vibrio cholerae
                Infectious disease & Microbiology
                classical, ctxb, letter, el tor, vibrio cholerae

                Comments

                Comment on this article