13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Available in hundreds of device designs and thousands of flavors, electronic cigarette (ECIG) may have differing toxicant emission characteristics. This study assesses nicotine and carbonyl yields in the most popular brands in the U.S. market. These products included disposable, prefilled cartridge, and tank-based ECIGs.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage.

          Glycerin (VG) and propylene glycol (PG) are the most common nicotine solvents used in e-cigarettes (ECs). It has been shown that at high temperatures both VG and PG undergo decomposition to low molecular carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. The aim of this study was to evaluate how various product characteristics, including nicotine solvent and battery output voltage, affect the levels of carbonyls in EC vapor. Twelve carbonyl compounds were measured in vapors from 10 commercially available nicotine solutions and from 3 control solutions composed of pure glycerin, pure propylene glycol, or a mixture of both solvents (50:50). EC battery output voltage was gradually modified from 3.2 to 4.8V. Carbonyl compounds were determined using the HPLC/DAD method. Formaldehyde and acetaldehyde were found in 8 of 13 samples. The amounts of formaldehyde and acetaldehyde in vapors from lower voltage EC were on average 13- and 807-fold lower than in tobacco smoke, respectively. The highest levels of carbonyls were observed in vapors generated from PG-based solutions. Increasing voltage from 3.2 to 4.8V resulted in a 4 to more than 200 times increase in formaldehyde, acetaldehyde, and acetone levels. The levels of formaldehyde in vapors from high-voltage device were in the range of levels reported in tobacco smoke. Vapors from EC contain toxic and carcinogenic carbonyl compounds. Both solvent and battery output voltage significantly affect levels of carbonyl compounds in EC vapors. High-voltage EC may expose users to high levels of carbonyl compounds. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hidden formaldehyde in e-cigarette aerosols.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nicotine absorption from electronic cigarette use: comparison between first and new-generation devices

              A wide range of electronic cigarette (EC) devices, from small cigarette-like (first-generation) to new-generation high-capacity batteries with electronic circuits that provide high energy to a refillable atomizer, are available for smokers to substitute smoking. Nicotine delivery to the bloodstream is important in determining the addictiveness of ECs, but also their efficacy as smoking substitutes. In this study, plasma nicotine levels were measured in experienced users using a first- vs. new-generation EC device for 1 hour with an 18 mg/ml nicotine-containing liquid. Plasma nicotine levels were higher by 35–72% when using the new- compared to the first-generation device. Compared to smoking one tobacco cigarette, the EC devices and liquid used in this study delivered one-third to one-fourth the amount of nicotine after 5 minutes of use. New-generation EC devices were more efficient in nicotine delivery, but still delivered nicotine much slower compared to tobacco cigarettes. The use of 18 mg/ml nicotine-concentration liquid probably compromises ECs' effectiveness as smoking substitutes; this study supports the need for higher levels of nicotine-containing liquids (approximately 50 mg/ml) in order to deliver nicotine more effectively and approach the nicotine-delivery profile of tobacco cigarettes.
                Bookmark

                Author and article information

                Journal
                Nicotine & Tobacco Research
                NICTOB
                Oxford University Press (OUP)
                1462-2203
                1469-994X
                October 07 2016
                : ntw280
                Article
                10.1093/ntr/ntw280
                5896517
                27798087
                432a532c-1f32-4a1f-8e2e-e360090ccfc5
                © 2016
                History

                Comments

                Comment on this article