7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure Optimization for Large Gene Networks Based on Greedy Strategy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the last few years, gene networks have become one of most important tools to model biological processes. Among other utilities, these networks visually show biological relationships between genes. However, due to the large amount of the currently generated genetic data, their size has grown to the point of being unmanageable. To solve this problem, it is possible to use computational approaches, such as heuristics-based methods, to analyze and optimize gene network's structure by pruning irrelevant relationships. In this paper we present a new method, called GeSOp, to optimize large gene network structures. The method is able to perform a considerably prune of the irrelevant relationships comprising the input network. To do so, the method is based on a greedy heuristic to obtain the most relevant subnetwork. The performance of our method was tested by means of two experiments on gene networks obtained from different organisms. The first experiment shows how GeSOp is able not only to carry out a significant reduction in the size of the network, but also to maintain the biological information ratio. In the second experiment, the ability to improve the biological indicators of the network is checked. Hence, the results presented show that GeSOp is a reliable method to optimize and improve the structure of large gene networks.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Prioritizing candidate disease genes by network-based boosting of genome-wide association data.

          Network "guilt by association" (GBA) is a proven approach for identifying novel disease genes based on the observation that similar mutational phenotypes arise from functionally related genes. In principle, this approach could account even for nonadditive genetic interactions, which underlie the synergistic combinations of mutations often linked to complex diseases. Here, we analyze a large-scale, human gene functional interaction network (dubbed HumanNet). We show that candidate disease genes can be effectively identified by GBA in cross-validated tests using label propagation algorithms related to Google's PageRank. However, GBA has been shown to work poorly in genome-wide association studies (GWAS), where many genes are somewhat implicated, but few are known with very high certainty. Here, we resolve this by explicitly modeling the uncertainty of the associations and incorporating the uncertainty for the seed set into the GBA framework. We observe a significant boost in the power to detect validated candidate genes for Crohn's disease and type 2 diabetes by comparing our predictions to results from follow-up meta-analyses, with incorporation of the network serving to highlight the JAK-STAT pathway and associated adaptors GRB2/SHC1 in Crohn's disease and BACH2 in type 2 diabetes. Consideration of the network during GWAS thus conveys some of the benefits of enrolling more participants in the GWAS study. More generally, we demonstrate that a functional network of human genes provides a valuable statistical framework for prioritizing candidate disease genes, both for candidate gene-based and GWAS-based studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene regulatory network inference: data integration in dynamic models-a review.

            Systems biology aims to develop mathematical models of biological systems by integrating experimental and theoretical techniques. During the last decade, many systems biological approaches that base on genome-wide data have been developed to unravel the complexity of gene regulation. This review deals with the reconstruction of gene regulatory networks (GRNs) from experimental data through computational methods. Standard GRN inference methods primarily use gene expression data derived from microarrays. However, the incorporation of additional information from heterogeneous data sources, e.g. genome sequence and protein-DNA interaction data, clearly supports the network inference process. This review focuses on promising modelling approaches that use such diverse types of molecular biological information. In particular, approaches are discussed that enable the modelling of the dynamics of gene regulatory systems. The review provides an overview of common modelling schemes and learning algorithms and outlines current challenges in GRN modelling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Topological analysis and interactive visualization of biological networks and protein structures.

              Computational analysis and interactive visualization of biological networks and protein structures are common tasks for gaining insight into biological processes. This protocol describes three workflows based on the NetworkAnalyzer and RINalyzer plug-ins for Cytoscape, a popular software platform for networks. NetworkAnalyzer has become a standard Cytoscape tool for comprehensive network topology analysis. In addition, RINalyzer provides methods for exploring residue interaction networks derived from protein structures. The first workflow uses NetworkAnalyzer to perform a topological analysis of biological networks. The second workflow applies RINalyzer to study protein structure and function and to compute network centrality measures. The third workflow combines NetworkAnalyzer and RINalyzer to compare residue networks. The full protocol can be completed in ∼2 h.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Math Methods Med
                Comput Math Methods Med
                CMMM
                Computational and Mathematical Methods in Medicine
                Hindawi
                1748-670X
                1748-6718
                2018
                14 June 2018
                : 2018
                : 9674108
                Affiliations
                1Division of Computer Science, Pablo de Olavide University, 41013 Seville, Spain
                2Carrera de Ingeniería Informática, Universidad Americana, Asunción, Paraguay
                Author notes

                Academic Editor: Ting Hu

                Author information
                http://orcid.org/0000-0001-7376-5790
                Article
                10.1155/2018/9674108
                6022335
                4331a592-901f-476e-abf3-93dfa57f2d52
                Copyright © 2018 Francisco Gómez-Vela et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 March 2018
                : 23 April 2018
                : 11 May 2018
                Categories
                Research Article

                Applied mathematics
                Applied mathematics

                Comments

                Comment on this article