9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Electrolyte roadblocks to a magnesium rechargeable battery

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.

          Kang Xu (2004)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-performance lithium battery anodes using silicon nanowires.

            There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Lithium−Air Battery: Promise and Challenges

                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2012
                2012
                : 5
                : 3
                : 5941
                Article
                10.1039/c2ee03029b
                43325b02-c623-4fbe-9f9b-d4db0bf38183
                © 2012
                History

                Comments

                Comment on this article