27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Absent or Low Rate of Adult Neurogenesis in the Hippocampus of Bats (Chiroptera)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bats are the only flying mammals and have well developed navigation abilities for 3D-space. Even bats with comparatively small home ranges cover much larger territories than rodents, and long-distance migration by some species is unique among small mammals. Adult proliferation of neurons, i.e., adult neurogenesis, in the dentate gyrus of rodents is thought to play an important role in spatial memory and learning, as indicated by lesion studies and recordings of neurons active during spatial behavior. Assuming a role of adult neurogenesis in hippocampal function, one might expect high levels of adult neurogenesis in bats, particularly among fruit- and nectar-eating bats in need of excellent spatial working memory. The dentate gyrus of 12 tropical bat species was examined immunohistochemically, using multiple antibodies against proteins specific for proliferating cells (Ki-67, MCM2), and migrating and differentiating neurons (Doublecortin, NeuroD). Our data show a complete lack of hippocampal neurogenesis in nine of the species (Glossophaga soricina, Carollia perspicillata, Phyllostomus discolor, Nycteris macrotis, Nycteris thebaica, Hipposideros cyclop s, Neoromicia rendalli, Pipistrellus guineensis, and Scotophilus leucogaster), while it was present at low levels in three species ( Chaerephon pumila, Mops condylurus and Hipposideros caffer). Although not all antigens were recognized in all species, proliferation activity in the subventricular zone and rostral migratory stream was found in all species, confirming the appropriateness of our methods for detecting neurogenesis. The small variation of adult hippocampal neurogenesis within our sample of bats showed no indication of a correlation with phylogenetic relationship, foraging strategy, type of hunting habitat or diet. Our data indicate that the widely accepted notion of adult neurogenesis supporting spatial abilities needs to be considered carefully. Given their astonishing longevity, certain bat species may be useful subjects to compare adult neurogenesis with other long-living species, such as monkeys and humans, showing low rates of adult hippocampal neurogenesis.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Stress and hippocampal plasticity.

          B S McEwen (1999)
          The hippocampus is a target of stress hormones, and it is an especially plastic and vulnerable region of the brain. It also responds to gonadal, thyroid, and adrenal hormones, which modulate changes in synapse formation and dendritic structure and regulate dentate gyrus volume during development and in adult life. Two forms of structural plasticity are affected by stress: Repeated stress causes atrophy of dendrites in the CA3 region, and both acute and chronic stress suppresses neurogenesis of dentate gyrus granule neurons. Besides glucocorticoids, excitatory amino acids and N-methyl-D-aspartate (NMDA) receptors are involved in these two forms of plasticity as well as in neuronal death that is caused in pyramidal neurons by seizures and by ischemia. The two forms of hippocampal structural plasticity are relevant to the human hippocampus, which undergoes a selective atrophy in a number of disorders, accompanied by deficits in declarative episodic, spatial, and contextual memory performance. It is important, from a therapeutic standpoint, to distinguish between a permanent loss of cells and a reversible atrophy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration.

            The subventricular zone (SVZ) is a principal source of adult neural stem cells in the rodent brain, generating thousands of olfactory bulb neurons every day. If the adult human brain contains a comparable germinal region, this could have considerable implications for future neuroregenerative therapy. Stem cells have been isolated from the human brain, but the identity, organization and function of adult neural stem cells in the human SVZ are unknown. Here we describe a ribbon of SVZ astrocytes lining the lateral ventricles of the adult human brain that proliferate in vivo and behave as multipotent progenitor cells in vitro. This astrocytic ribbon has not been observed in other vertebrates studied. Unexpectedly, we find no evidence of chains of migrating neuroblasts in the SVZ or in the pathway to the olfactory bulb. Our work identifies SVZ astrocytes as neural stem cells in a niche of unique organization in the adult human brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis.

              Adult animals continue to produce new neurons in the dentate gyrus of hippocampus. Until now, the principal method of studying neurogenesis has been to inject either tritiated thymidine or 5'-Bromo-2-deoxyuridine (BrdU) intraperitoneally followed by autoradiographic or immunohistochemical detection methods respectively. However, such exogenous markers may produce toxic effects. Our objective was to determine whether Ki-67, a nuclear protein expressed in all phases of the cell cycle except the resting phase, can be used as an alternative, endogenous marker. Using immunohistochemistry, we examined Ki-67 and BrdU expression pattern in rats. Ki-67 was expressed within the proliferative zone of the dentate gyrus and its expression pattern mimicked that of BrdU when examined soon after exogenous BrdU administration. Quantitative comparison of BrdU and Ki-67-positive cells showed 50% higher numbers of the latter when examined 24 h after the BrdU injection. This was expected, since BrdU can be incorporated into DNA only during the S-phase of the mitotic process, whereas Ki-67 is expressed for its whole duration. Experimental increases (by ischemia) or reductions (by radiation) in the number of mitotic cells produced parallel changes in BrdU and Ki-67 signals. Thus, Ki-67 is an effective mitotic marker and has most of the benefits of BrdU and none of the costs. This study provides evidence for Ki-67 to be used as a marker of proliferation in the initial phase of adult neurogenesis.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS ONE
                plos
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2007
                23 May 2007
                : 2
                : 5
                : e455
                Affiliations
                [1 ]University of Zurich, Institute of Anatomy, Division of Neuroanatomy and Behavior, Zurich, Switzerland
                [2 ]Department of Biology, University of Munich, Munich, Germany
                James Cook University, Australia
                Author notes
                * To whom correspondence should be addressed. E-mail: hplipp@ 123456anatom.uzh.ch

                Conceived and designed the experiments: HL IA. Performed the experiments: DD. Analyzed the data: IA. Contributed reagents/materials/analysis tools: DD YW. Wrote the paper: HL IA DD YW.

                [¤]

                Current address: Cognitive Neuroscience, Department of Biology, University of Bielefeld, Bielefeld, Germany

                Article
                06-PONE-RA-00529R1
                10.1371/journal.pone.0000455
                1866182
                17520014
                43362419-ceab-4100-8ce5-23eef8c9a9c3
                Amrein et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 December 2006
                : 13 April 2007
                Page count
                Pages: 8
                Categories
                Research Article
                Cell Biology/Cell Growth and Division
                Cell Biology/Neuronal and Glial Cell Biology
                Developmental Biology/Cell Differentiation
                Ecology/Community Ecology and Biodiversity
                Evolutionary Biology/Evolutionary Ecology
                Evolutionary Biology/Morphogenesis and Cell Biology
                Neuroscience/Behavioral Neuroscience
                Neuroscience/Cognitive Neuroscience

                Uncategorized
                Uncategorized

                Comments

                Comment on this article