9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the cellular pathways that regulate endothelial nitric oxide (eNOS, NOS3) expression and consequently nitric oxide (NO) bioavailability during hypoxia is a necessary aspect in the development of novel treatments for cardiovascular disorders. eNOS expression and eNOS-dependent NO cellular signaling during hypoxia promote an equilibrium of transcriptional and posttranscriptional molecular mechanisms that belong to both proapoptotic and survival pathways. Furthermore, NO bioavailability results not only from eNOS levels, but also relies on the presence of eNOS substrate and cofactors, the phosphorylation status of eNOS, and the presence of reactive oxygen species (ROS) that can inactivate eNOS. Since both NOS3 levels and these signaling pathways can also be a subject of posttranscriptional modulation by microRNAs (miRNAs), this class of short noncoding RNAs contribute another level of regulation for NO bioavailability. As miRNA antagomirs or specific target protectors could be used in therapeutic approaches to regulate NO levels, either by changing NOS3 mRNA stability or through factors governing eNOS activity, it is critical to understand their role in governing eNOS activity during hypoxa. In contrast to a large number of miRNAs reported to the change eNOS expression during hypoxia, only a few miRNAs modulate eNOS activity. Furthermore, impaired miRNA biogenesis leads to NOS3 mRNA stabilization under hypoxia. Here we discuss the recent studies that define miRNAs’ role in maintaining endothelial NO bioavailability emphasizing those miRNAs that directly modulate NOS3 expression or eNOS activity.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease.

          Endothelial function is impaired in coronary artery disease and may contribute to its clinical manifestations. Increased oxidative stress has been linked to impaired endothelial function in atherosclerosis and may play a role in the pathogenesis of cardiovascular events. This study was designed to determine whether endothelial dysfunction and vascular oxidative stress have prognostic impact on cardiovascular event rates in patients with coronary artery disease. Endothelium-dependent and -independent vasodilation was determined in 281 patients with documented coronary artery disease by measuring forearm blood flow responses to acetylcholine and sodium nitroprusside using venous occlusion plethysmography. The effect of the coadministration of vitamin C (24 mg/min) was assessed in a subgroup of 179 patients. Cardiovascular events, including death from cardiovascular causes, myocardial infarction, ischemic stroke, coronary angioplasty, and coronary or peripheral bypass operation, were studied during a mean follow-up period of 4.5 years. Patients experiencing cardiovascular events (n=91) had lower vasodilator responses to acetylcholine (P<0.001) and sodium nitroprusside (P<0.05), but greater benefit from vitamin C (P<0.01). The Cox proportional regression analysis for conventional risk factors demonstrated that blunted acetylcholine-induced vasodilation (P=0.001), the effect of vitamin C (P=0.001), and age (P=0.016) remained independent predictors of cardiovascular events. Endothelial dysfunction and increased vascular oxidative stress predict the risk of cardiovascular events in patients with coronary artery disease. These data support the concept that oxidative stress may contribute not only to endothelial dysfunction but also to coronary artery disease activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A microRNA signature of hypoxia.

            Recent research has identified critical roles for microRNAs in a large number of cellular processes, including tumorigenic transformation. While significant progress has been made towards understanding the mechanisms of gene regulation by microRNAs, much less is known about factors affecting the expression of these noncoding transcripts. Here, we demonstrate for the first time a functional link between hypoxia, a well-documented tumor microenvironment factor, and microRNA expression. Microarray-based expression profiles revealed that a specific spectrum of microRNAs (including miR-23, -24, -26, -27, -103, -107, -181, -210, and -213) is induced in response to low oxygen, at least some via a hypoxia-inducible-factor-dependent mechanism. Select members of this group (miR-26, -107, and -210) decrease proapoptotic signaling in a hypoxic environment, suggesting an impact of these transcripts on tumor formation. Interestingly, the vast majority of hypoxia-induced microRNAs are also overexpressed in a variety of human tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypertension in mice lacking the gene for endothelial nitric oxide synthase.

              Nitric oxide (NO), a potent vasodilator produced by endothelial cells, is thought to be the endothelium-dependent relaxing factor (EDRF) which mediates vascular relaxation in response to acetylcholine, bradykinin and substance P in many vascular beds. NO has been implicated in the regulation of blood pressure and regional blood flow, and also affects vascular smooth-muscle proliferation and inhibits platelet aggregation and leukocyte adhesion. Abnormalities in endothelial production of NO occur in atherosclerosis, diabetes and hypertension. Pharmacological blockade of NO production with arginine analogues such as L-nitroarginine (L-NA) or L-N-arginine methyl ester affects multiple isoforms of nitric oxide synthase (NOS), and so cannot distinguish their physiological roles. To study the role of endothelial NOS (eNOS) in vascular function, we disrupted the gene encoding eNOS in mice. Endothelium-derived relaxing factor activity, as assayed by acetylcholine-induced relaxation, is absent, and the eNOS mutant mice are hypertensive. Thus eNOS mediates basal vasodilation. Responses to NOS blockade in the mutant mice suggest that non-endothelial isoforms of NOS may be involved in maintaining blood pressure.
                Bookmark

                Author and article information

                Contributors
                +48 58 349 2791 , lekal@gumed.edu.pl
                ajanaszak@gmail.com
                asiekierzycka@gumed.edu.pl
                sylwiabart@gumed.edu.pl
                marwoz@gumed.edu.pl
                dawlejno@gumed.edu.pl
                jcollawn@uab.edu
                +48 58 349 32 14 , rafalbar@gumed.edu.pl
                Journal
                Cell Mol Biol Lett
                Cell. Mol. Biol. Lett
                Cellular & Molecular Biology Letters
                BioMed Central (London )
                1425-8153
                1689-1392
                6 September 2016
                6 September 2016
                2016
                : 21
                : 16
                Affiliations
                [1 ]GRID grid.11451.30, ISNI 0000000105313426, , Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, ; Debinki 7, 80-211 Gdansk, Poland
                [2 ]GRID grid.11451.30, ISNI 0000000105313426, , Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, ; Hallera 107, 80-416 Gdansk, Poland
                [3 ]GRID grid.11451.30, ISNI 0000000105313426, Department of Inorganic Chemistry, , Medical University of Gdansk, ; Gdansk, Poland
                [4 ]GRID grid.265892.2, ISNI 0000000106344187, Department of Cell Biology, Developmental, and Integrative, , University of Alabama at Birmingham, ; Birmingham, USA
                Author information
                http://orcid.org/0000-0002-2864-6757
                Article
                17
                10.1186/s11658-016-0017-x
                5415778
                28536619
                433bb46d-6b3e-4cfb-86a0-848f2e7afbe1
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 June 2016
                : 18 August 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004281, Narodowe Centrum Nauki;
                Award ID: N N401 633640
                Award ID: 2015/19/B/NZ7/03830
                Award Recipient :
                Categories
                Mini Review
                Custom metadata
                © The Author(s) 2016

                enos,er stress,hypoxia,mirna,nitric oxide,no bioavailability,nos3,sone
                enos, er stress, hypoxia, mirna, nitric oxide, no bioavailability, nos3, sone

                Comments

                Comment on this article