12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          A hypercube-based encoding for evolving large-scale neural networks.

          Research in neuroevolution-that is, evolving artificial neural networks (ANNs) through evolutionary algorithms-is inspired by the evolution of biological brains, which can contain trillions of connections. Yet while neuroevolution has produced successful results, the scale of natural brains remains far beyond reach. This article presents a method called hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) that aims to narrow this gap. HyperNEAT employs an indirect encoding called connective compositional pattern-producing networks (CPPNs) that can produce connectivity patterns with symmetries and repeating motifs by interpreting spatial patterns generated within a hypercube as connectivity patterns in a lower-dimensional space. This approach can exploit the geometry of the task by mapping its regularities onto the topology of the network, thereby shifting problem difficulty away from dimensionality to the underlying problem structure. Furthermore, connective CPPNs can represent the same connectivity pattern at any resolution, allowing ANNs to scale to new numbers of inputs and outputs without further evolution. HyperNEAT is demonstrated through visual discrimination and food-gathering tasks, including successful visual discrimination networks containing over eight million connections. The main conclusion is that the ability to explore the space of regular connectivity patterns opens up a new class of complex high-dimensional tasks to neuroevolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preparing a collection of radiology examinations for distribution and retrieval.

            Clinical documents made available for secondary use play an increasingly important role in discovery of clinical knowledge, development of research methods, and education. An important step in facilitating secondary use of clinical document collections is easy access to descriptions and samples that represent the content of the collections. This paper presents an approach to developing a collection of radiology examinations, including both the images and radiologist narrative reports, and making them publicly available in a searchable database.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Automatic tuberculosis screening using chest radiographs.

              Tuberculosis is a major health threat in many regions of the world. Opportunistic infections in immunocompromised HIV/AIDS patients and multi-drug-resistant bacterial strains have exacerbated the problem, while diagnosing tuberculosis still remains a challenge. When left undiagnosed and thus untreated, mortality rates of patients with tuberculosis are high. Standard diagnostics still rely on methods developed in the last century. They are slow and often unreliable. In an effort to reduce the burden of the disease, this paper presents our automated approach for detecting tuberculosis in conventional posteroanterior chest radiographs. We first extract the lung region using a graph cut segmentation method. For this lung region, we compute a set of texture and shape features, which enable the X-rays to be classified as normal or abnormal using a binary classifier. We measure the performance of our system on two datasets: a set collected by the tuberculosis control program of our local county's health department in the United States, and a set collected by Shenzhen Hospital, China. The proposed computer-aided diagnostic system for TB screening, which is ready for field deployment, achieves a performance that approaches the performance of human experts. We achieve an area under the ROC curve (AUC) of 87% (78.3% accuracy) for the first set, and an AUC of 90% (84% accuracy) for the second set. For the first set, we compare our system performance with the performance of radiologists. When trying not to miss any positive cases, radiologists achieve an accuracy of about 82% on this set, and their false positive rate is about half of our system's rate.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Healthc Eng
                J Healthc Eng
                JHE
                Journal of Healthcare Engineering
                Hindawi
                2040-2295
                2040-2309
                2019
                27 March 2019
                : 2019
                : 4180949
                Affiliations
                1Department of Computer Engineering, Dongseo University, Busan, Republic of Korea
                2Division of Computer Engineering, Dongseo University, Busan, Republic of Korea
                3Department of Civil Engineering, Yeungnam University, Gyeongsan, Republic of Korea
                Author notes

                Guest Editor: Ahyoung Choi

                Author information
                http://orcid.org/0000-0002-7495-6174
                http://orcid.org/0000-0001-7298-7930
                http://orcid.org/0000-0003-4266-6436
                http://orcid.org/0000-0002-2902-6832
                Article
                10.1155/2019/4180949
                6458916
                31049186
                4343c20f-289a-4ac8-91f4-091b5d69287c
                Copyright © 2019 Okeke Stephen et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 December 2018
                : 24 February 2019
                Funding
                Funded by: National Research Foundation of Korea
                Award ID: 2018R1D1A1B07045337
                Categories
                Research Article

                Comments

                Comment on this article