Blog
About

27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Superconductivity at 38 K in the Iron Arsenide\(({\mathrm{Ba}}_{1-x}{\mathrm{K}}_{x}){\mathrm{Fe}}_{2}{\mathrm{As}}_{2}\)

      , ,

      Physical Review Letters

      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: not found
          • Article: not found

          Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Possible highT c superconductivity in the Ba?La?Cu?O system

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems.

              Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-T(c)) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150 K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155 K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at approximately 137 K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-T(c) copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                September 2008
                September 5 2008
                : 101
                : 10
                10.1103/PhysRevLett.101.107006
                © 2008

                http://link.aps.org/licenses/aps-default-license

                Comments

                Comment on this article