1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Large Language Models for Traffic and Transportation Research: Methodologies, State of the Art, and Future Opportunities

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rapid rise of Large Language Models (LLMs) is transforming traffic and transportation research, with significant advancements emerging between the years 2023 and 2025 -- a period marked by the inception and swift growth of adopting and adapting LLMs for various traffic and transportation applications. However, despite these significant advancements, a systematic review and synthesis of the existing studies remain lacking. To address this gap, this paper provides a comprehensive review of the methodologies and applications of LLMs in traffic and transportation, highlighting their ability to process unstructured textual data to advance transportation research. We explore key applications, including autonomous driving, travel behavior prediction, and general transportation-related queries, alongside methodologies such as zero- or few-shot learning, prompt engineering, and fine-tuning. Our analysis identifies critical research gaps. From the methodological perspective, many research gaps can be addressed by integrating LLMs with existing tools and refining LLM architectures. From the application perspective, we identify numerous opportunities for LLMs to tackle a variety of traffic and transportation challenges, building upon existing research. By synthesizing these findings, this review not only clarifies the current state of LLM adoption and adaptation in traffic and transportation but also proposes future research directions, paving the way for smarter and more sustainable transportation systems.

          Related collections

          Author and article information

          Journal
          27 March 2025
          Article
          2503.21330
          436f32ab-cbdd-4ecc-a724-76ee67fb231d

          http://creativecommons.org/licenses/by-nc-sa/4.0/

          History
          Custom metadata
          cs.CE

          Applied computer science
          Applied computer science

          Comments

          Comment on this article

          Related Documents Log