69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the β-Cell–Centric Classification Schema

      discussion

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current classification system presents challenges to the diagnosis and treatment of patients with diabetes mellitus (DM), in part due to its conflicting and confounding definitions of type 1 DM, type 2 DM, and latent autoimmune diabetes of adults (LADA). The current schema also lacks a foundation that readily incorporates advances in our understanding of the disease and its treatment. For appropriate and coherent therapy, we propose an alternate classification system. The β-cell–centric classification of DM is a new approach that obviates the inherent and unintended confusions of the current system. The β-cell–centric model presupposes that all DM originates from a final common denominator—the abnormal pancreatic β-cell. It recognizes that interactions between genetically predisposed β-cells with a number of factors, including insulin resistance (IR), susceptibility to environmental influences, and immune dysregulation/inflammation, lead to the range of hyperglycemic phenotypes within the spectrum of DM. Individually or in concert, and often self-perpetuating, these factors contribute to β-cell stress, dysfunction, or loss through at least 11 distinct pathways. Available, yet underutilized, treatments provide rational choices for personalized therapies that target the individual mediating pathways of hyperglycemia at work in any given patient, without the risk of drug-related hypoglycemia or weight gain or imposing further burden on the β-cells. This article issues an urgent call for the review of the current DM classification system toward the consensus on a new, more useful system.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future.

          Glucose metabolism is normally regulated by a feedback loop including islet β cells and insulin-sensitive tissues, in which tissue sensitivity to insulin affects magnitude of β-cell response. If insulin resistance is present, β cells maintain normal glucose tolerance by increasing insulin output. Only when β cells cannot release sufficient insulin in the presence of insulin resistance do glucose concentrations rise. Although β-cell dysfunction has a clear genetic component, environmental changes play an essential part. Modern research approaches have helped to establish the important role that hexoses, aminoacids, and fatty acids have in insulin resistance and β-cell dysfunction, and the potential role of changes in the microbiome. Several new approaches for treatment have been developed, but more effective therapies to slow progressive loss of β-cell function are needed. Recent findings from clinical trials provide important information about methods to prevent and treat type 2 diabetes and some of the adverse effects of these interventions. However, additional long-term studies of drugs and bariatric surgery are needed to identify new ways to prevent and treat type 2 diabetes and thereby reduce the harmful effects of this disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting inflammation in the treatment of type 2 diabetes: time to start.

            The role of inflammation in the pathogenesis of type 2 diabetes and associated complications is now well established. Several conditions that are driven by inflammatory processes are also associated with diabetes, including rheumatoid arthritis, gout, psoriasis and Crohn's disease, and various anti-inflammatory drugs have been approved or are in late stages of development for the treatment of these conditions. This review discusses the rationale for the use of some of these anti-inflammatory treatments in patients with diabetes and what we could expect from their use. Future immunomodulatory treatments may not target a specific disease, but could instead act on a dysfunctional pathway that causes several conditions associated with the metabolic syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome.

              Recent clinical and experimental evidence suggests that endoplasmic reticulum (ER) stress contributes to the life-and-death decisions of β cells during the progression of type 1 and type 2 diabetes. Although crosstalk between inflammation and ER stress has been suggested to play a significant role in β cell dysfunction and death, a key molecule connecting ER stress to inflammation has not been identified. Here we report that thioredoxin-interacting protein (TXNIP) is a critical signaling node that links ER stress and inflammation. TXNIP is induced by ER stress through the PERK and IRE1 pathways, induces IL-1β mRNA transcription, activates IL-1β production by the NLRP3 inflammasome, and mediates ER stress-mediated β cell death. Collectively, our results suggest that TXNIP is a potential therapeutic target for diabetes and ER stress-related human diseases such as Wolfram syndrome. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Diabetes Care
                Diabetes Care
                diacare
                dcare
                Diabetes Care
                Diabetes Care
                American Diabetes Association
                0149-5992
                1935-5548
                February 2016
                12 January 2016
                : 39
                : 2
                : 179-186
                Affiliations
                [1] 1Main Line Health, Wynnewood, PA, and University of Pennsylvania, Philadelphia, PA
                [2] 2Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Mount Sinai Hospital, New York, NY
                [3] 3Department of Medicine, Boston University School of Medicine, Boston, MA
                [4] 4Division of Human Genetics and Center for Applied Genomics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
                [5] 5Emory University School of Medicine, Atlanta, GA
                [6] 6Diabetes Nation, Sisters, OR
                Author notes
                Corresponding author: Stanley S. Schwartz, stschwar@ 123456gmail.com .
                Article
                1585
                10.2337/dc15-1585
                5317235
                26798148
                439497c6-9f69-460e-8d91-0f51ad3764b7
                © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
                History
                : 22 July 2015
                : 3 November 2015
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 89, Pages: 8
                Categories
                Perspectives in Care

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article