52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mild Electrical Stimulation and Heat Shock Ameliorates Progressive Proteinuria and Renal Inflammation in Mouse Model of Alport Syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alport syndrome is a hereditary glomerulopathy with proteinuria and nephritis caused by defects in genes encoding type IV collagen in the glomerular basement membrane. All male and most female patients develop end-stage renal disease. Effective treatment to stop or decelerate the progression of proteinuria and nephritis is still under investigation. Here we showed that combination treatment of mild electrical stress (MES) and heat stress (HS) ameliorated progressive proteinuria and renal injury in mouse model of Alport syndrome. The expressions of kidney injury marker neutrophil gelatinase-associated lipocalin and pro-inflammatory cytokines interleukin-6, tumor necrosis factor-α and interleukin-1β were suppressed by MES+HS treatment. The anti-proteinuric effect of MES+HS treatment is mediated by podocytic activation of phosphatidylinositol 3-OH kinase (PI3K)-Akt and heat shock protein 72 (Hsp72)-dependent pathways in vitro and in vivo. The anti-inflammatory effect of MES+HS was mediated by glomerular activation of c-jun NH 2-terminal kinase 1/2 (JNK1/2) and p38-dependent pathways ex vivo. Collectively, our studies show that combination treatment of MES and HS confers anti-proteinuric and anti-inflammatory effects on Alport mice likely through the activation of multiple signaling pathways including PI3K-Akt, Hsp72, JNK1/2, and p38 pathways, providing a novel candidate therapeutic strategy to decelerate the progression of patho-phenotypes in Alport syndrome.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits.

          Excessive inflammation is becoming accepted as a critical factor in many human diseases, including inflammatory and autoimmune disorders, neurodegenerative conditions, infection, cardiovascular diseases, and cancer. Cerebral ischemia and neurodegenerative diseases are accompanied by a marked inflammatory reaction that is initiated by expression of cytokines, adhesion molecules, and other inflammatory mediators, including prostanoids and nitric oxide. This review discusses recent advances regarding the detrimental effects of inflammation, the regulation of inflammatory signalling pathways in various diseases, and the potential molecular targets for anti-inflammatory therapy. Mitogen-activated protein kinases (MAPKs) are a family of serine/threonine protein kinases that mediate fundamental biological processes and cellular responses to external stress signals. Increased activity of MAPK, in particular p38 MAPK, and their involvement in the regulation of the synthesis of inflammation mediators at the level of transcription and translation, make them potential targets for anti-inflammatory therapeutics. Inhibitors targeting p38 MAPK and JNK pathways have been developed, and preclinical data suggest that they exhibit anti-inflammatory activity. This review discusses how these novel drugs modulate the activity of the p38 MAPK and JNK signalling cascades, and exhibit anti-inflammatory effects in preclinical disease models, primarily through the inhibition of the expression of inflammatory mediators. Use of MAPK inhibitors emerges as an attractive strategy because they are capable of reducing both the synthesis of pro-inflammatory cytokines and their signalling. Moreover, many of these drugs are small molecules that can be administered orally, and initial results of clinical trials have shown clinical benefits in patients with chronic inflammatory disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury.

            Bone morphogenic protein (BMP)-7 is a 35-kDa homodimeric protein and a member of the transforming growth factor (TGF)-beta superfamily. BMP-7 expression is highest in the kidney, and its genetic deletion in mice leads to severe impairment of eye, skeletal and kidney development. Here we report that BMP-7 reverses TGF-beta1-induced epithelial-to-mesenchymal transition (EMT) by reinduction of E-cadherin, a key epithelial cell adhesion molecule. Additionally, we provide molecular evidence for Smad-dependent reversal of TGF-beta1-induced EMT by BMP-7 in renal tubular epithelial cells and mammary ductal epithelial cells. In the kidney, EMT-induced accumulation of myofibroblasts and subsequent tubular atrophy are considered key determinants of renal fibrosis during chronic renal injury. We therefore tested the potential of BMP-7 to reverse TGF-beta1-induced de novo EMT in a mouse model of chronic renal injury. Our results show that systemic administration of recombinant human BMP-7 leads to repair of severely damaged renal tubular epithelial cells, in association with reversal of chronic renal injury. Collectively, these results provide evidence of cross talk between BMP-7 and TGF-beta1 in the regulation of EMT in health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN.

              Wound healing is essential for maintaining the integrity of multicellular organisms. In every species studied, disruption of an epithelial layer instantaneously generates endogenous electric fields, which have been proposed to be important in wound healing. The identity of signalling pathways that guide both cell migration to electric cues and electric-field-induced wound healing have not been elucidated at a genetic level. Here we show that electric fields, of a strength equal to those detected endogenously, direct cell migration during wound healing as a prime directional cue. Manipulation of endogenous wound electric fields affects wound healing in vivo. Electric stimulation triggers activation of Src and inositol-phospholipid signalling, which polarizes in the direction of cell migration. Notably, genetic disruption of phosphatidylinositol-3-OH kinase-gamma (PI(3)Kgamma) decreases electric-field-induced signalling and abolishes directed movements of healing epithelium in response to electric signals. Deletion of the tumour suppressor phosphatase and tensin homolog (PTEN) enhances signalling and electrotactic responses. These data identify genes essential for electrical-signal-induced wound healing and show that PI(3)Kgamma and PTEN control electrotaxis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                24 August 2012
                : 7
                : 8
                : e43852
                Affiliations
                [1 ]Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences and Global COE “Cell Fate Regulation Research and Education Unit”, Kumamoto University, Kumamoto, Japan
                [2 ]Research Fellow of the Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
                [3 ]Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
                University of Houston, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TK HK. Performed the experiments: TK YK RF KK. Analyzed the data: TK SMK T. Sato HK. Contributed reagents/materials/analysis tools: T. Shuto HK. Wrote the paper: TK MAS HK.

                Article
                PONE-D-11-09373
                10.1371/journal.pone.0043852
                3427222
                22937108
                439e159c-1841-4543-ba6d-350e0283d18e
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 May 2011
                : 27 July 2012
                Page count
                Pages: 11
                Funding
                This work was supported by grants from the Ministry of Education, Science, Sports and Culture (MEXT) of Japan (#19390045), from the Global COE Program (Cell Fate Regulation Research and Education Unit) to H.K., and grant-in-aid from JSPS Research fellow (20-8140) to T.K. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Drugs and Devices
                Medical Devices
                Nephrology
                Acute Renal Failure

                Uncategorized
                Uncategorized

                Comments

                Comment on this article