25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Celastrus orbiculatus extract suppresses the epithelial-mesenchymal transition by mediating cytoskeleton rearrangement via inhibition of the Cofilin 1 signaling pathway in human gastric cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Celastrus orbiculatus is a traditional medicinal plant used in the anti-inflammatory and analgesic treatment of various diseases. A previous study demonstrated that ethyl acetate extract of C. orbiculatus (COE) exhibited significant antitumor effects. However, studies concerning the effects and mechanism of COE in terms of suppressing the epithelial-mesenchymal transition (EMT) in human gastric adenocarcinoma cells have not been performed at present. The present study hypothesized that COE may inhibit EMT in gastric adenocarcinoma cells by regulating cell cytoskeleton rearrangement. The effect of COE on the viability of AGS cells was detected by MTT assay. An EMT model was induced by transforming growth factor-β1. Cell cytoskeleton staining, laser scanning confocal microscopy and electronic microscopy were used to detect the changes in cell morphology and microstructure of gastric adenocarcinoma cells prior and subsequent to COE treatment. Invasion and migration assays were used to observe the effect of COE on the metastatic ability of AGS cells in vitro. The effect of COE on the expression of Cofilin 1 and EMT biomarkers, including Epithelial-cadherin, Neural-cadherin, Vimentin and matrix metalloproteinases, was examined by western blotting in AGS cells. The correlation between Cofilin 1 and EMT was investigated with immunofluorescence and cytoskeleton staining methods. The results demonstrated that COE may significantly inhibit the process of EMT in AGS cells, and that this was concentration-dependent. In addition, COE significantly downregulated the level of Cofilin 1 in a concentration-dependent manner. In conclusion, these results suggested that Cofilin 1 was directly involved in the process of EMT in AGS cells, and that it served an important function. COE may significantly inhibit EMT in AGS cells, potentially by inhibiting the activation of the Cofilin 1 signaling pathway. The present study may provide a basis for the development of novel anticancer drugs and the development of novel therapeutic strategies, targeting Cofilin 1 protein.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Matrix metalloproteinases in tumorigenesis: an evolving paradigm.

          Proteases are crucial for development, tissue remodeling, and tumorigenesis. Matrix metalloproteinases (MMPs) family, in particular, consists of more than 20 members with unique substrates and diverse function. The expression and activity of MMPs in a variety of human cancers have been intensively studied. MMPs have well-recognized roles in the late stage of tumor progression, invasion, and metastasis. However, increasing evidence demonstrates that MMPs are involved earlier in tumorigenesis, e.g., in malignant transformation, angiogenesis, and tumor growth both at the primary and metastatic sites. Recent studies also suggest that MMPs play complex roles in tumor progression. While most MMPs promote tumor progression, some of them may protect the host against tumorigenesis in a context-dependent manner. MMPs have been chosen as promising targets for cancer therapy on the basis of their aberrant up-regulation in malignant tumors and their ability to promote cancer metastasis. Although preclinical studies testing the efficacy of MMP suppression in tumor models were so encouraging, the results of clinical trials in cancer patients have been rather disappointing. Here, we review the complex roles of MMPs and their endogenous inhibitors such as tissue inhibitors of metalloproteinase in tumorigenesis and strategies in suppressing MMPs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            EMT in Breast Carcinoma—A Review

            The epithelial to mesenchymal transition (EMT) is a cellular program that is involved in embryonic development; wound healing, but also in tumorigenesis. Breast carcinoma (BC) is the most common cancer in women worldwide, and the majority of deaths (90%) are caused by invasion and metastasis. The EMT plays an important role in invasion and subsequent metastasis. Several distinct biological events integrate a cascade that leads not only to a change from an epithelial to mesenchymal phenotype, but allows for detachment, migration, invasion and ultimately, colonization of a second site. Understanding the biological intricacies of the EMT may provide important insights that lead to the development of therapeutic targets in pre-invasive and invasive breast cancer, and could be used as biomarkers identifying tumor subsets with greater chances of recurrence, metastasis and therapeutic resistance leading to death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors

              Understanding the mechanisms controlling cancer cell invasion and metastasis constitutes a fundamental step in setting new strategies for diagnosis, prognosis, and therapy of metastatic cancers. LIM kinase1 (LIMK1) is a member of a novel class of serine–threonine protein kinases. Cofilin, a LIMK1 substrate, is essential for the regulation of actin polymerization and depolymerization during cell migration. Previous studies have made opposite conclusions as to the role of LIMK1 in tumor cell motility and metastasis, claiming either an increase or decrease in cell motility and metastasis as a result of LIMK1 over expression (Zebda, N., O. Bernard, M. Bailly, S. Welti, D.S. Lawrence, and J.S. Condeelis. 2000. J. Cell Biol. 151:1119–1128; Davila, M., A.R. Frost, W.E. Grizzle, and R. Chakrabarti. 2003. J. Biol. Chem. 278:36868–36875; Yoshioka, K., V. Foletta, O. Bernard, and K. Itoh. 2003. Proc. Natl. Acad. Sci. USA. 100:7247–7252; Nishita, M., C. Tomizawa, M. Yamamoto, Y. Horita, K. Ohashi, and K. Mizuno. 2005. J. Cell Biol. 171:349–359). We resolve this paradox by showing that the effects of LIMK1 expression on migration, intravasation, and metastasis of cancer cells can be most simply explained by its regulation of the output of the cofilin pathway. LIMK1-mediated decreases or increases in the activity of the cofilin pathway are shown to cause proportional decreases or increases in motility, intravasation, and metastasis of tumor cells.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                September 2017
                23 June 2017
                23 June 2017
                : 14
                : 3
                : 2926-2932
                Affiliations
                [1 ]Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
                [2 ]The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
                [3 ]Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
                Author notes
                Correspondence to: Professor Yanqing Liu, Medical and Pharmaceutical Institute, Yangzhou University, 88 South University Avenue, Yangzhou, Jiangsu 225009, P.R. China, E-mail: liuyq@ 123456yzu.edu.cn
                Article
                OL-0-0-6470
                10.3892/ol.2017.6470
                5588110
                43a4229c-1b72-4908-a45e-59ce2e8ee58b
                Copyright: © Wang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 03 November 2015
                : 21 April 2017
                Categories
                Articles

                Oncology & Radiotherapy
                celastrus orbiculatus,gastric cancer,cofilin 1,epithelial-mesenchymal transition,cytoskeleton

                Comments

                Comment on this article