9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Pathogen-Responsive Leucine Rich Receptor Like Kinase Contributes to Fusarium Resistance in Cereals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Receptor-like kinases form the largest family of receptors in plants and play an important role in recognizing pathogen-associated molecular patterns and modulating the plant immune responses to invasive fungi, including cereal defenses against fungal diseases. But hitherto, none have been shown to modulate the wheat response to the economically important Fusarium head blight (FHB) disease of small-grain cereals. Homologous genes were identified on barley chromosome 6H ( HvLRRK-6H) and wheat chromosome 6DL ( TaLRRK-6D), which encode the characteristic domains of surface-localized receptor like kinases. Gene expression studies validated that the wheat TaLRRK-6D is highly induced in heads as an early response to both the causal pathogen of FHB disease, Fusarium graminearum, and its’ mycotoxic virulence factor deoxynivalenol. The transcription of other wheat homeologs of this gene, located on chromosomes 6A and 6B, was also up-regulated in response to F. graminearum. Virus-induced gene silencing (VIGS) of the barley HvLRRK-6H compromised leaf defense against F. graminearum. VIGS of TaLRRK-6D in two wheat cultivars, CM82036 (resistant to FHB disease) and cv. Remus (susceptible to FHB), confirmed that TaLRRK-6D contributes to basal resistance to FHB disease in both genotypes. Although the effect of VIGS did not generally reduce grain losses due to FHB, this experiment did reveal that TaLRRK-6D positively contributes to grain development. Further gene expression studies in wheat cv. Remus indicated that VIGS of TaLRRK-6D suppressed the expression of genes involved in salicylic acid signaling, which is a key hormonal pathway involved in defense. Thus, this study provides the first evidence of receptor like kinases as an important component of cereal defense against Fusarium and highlights this gene as a target for enhancing cereal resistance to FHB disease.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Plant pathogens and integrated defence responses to infection.

          Plants cannot move to escape environmental challenges. Biotic stresses result from a battery of potential pathogens: fungi, bacteria, nematodes and insects intercept the photosynthate produced by plants, and viruses use replication machinery at the host's expense. Plants, in turn, have evolved sophisticated mechanisms to perceive such attacks, and to translate that perception into an adaptive response. Here, we review the current knowledge of recognition-dependent disease resistance in plants. We include a few crucial concepts to compare and contrast plant innate immunity with that more commonly associated with animals. There are appreciable differences, but also surprising parallels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SMART: recent updates, new developments and status in 2015

            SMART (Simple Modular Architecture Research Tool) is a web resource (http://smart.embl.de/) providing simple identification and extensive annotation of protein domains and the exploration of protein domain architectures. In the current version, SMART contains manually curated models for more than 1200 protein domains, with ∼200 new models since our last update article. The underlying protein databases were synchronized with UniProt, Ensembl and STRING, bringing the total number of annotated domains and other protein features above 100 million. SMART's ‘Genomic’ mode, which annotates proteins from completely sequenced genomes was greatly expanded and now includes 2031 species, compared to 1133 in the previous release. SMART analysis results pages have been completely redesigned and include links to several new information sources. A new, vector-based display engine has been developed for protein schematics in SMART, which can also be exported as high-resolution bitmap images for easy inclusion into other documents. Taxonomic tree displays in SMART have been significantly improved, and can be easily navigated using the integrated search engine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence.

              Plants sense potential microbial invaders by using pattern-recognition receptors to recognize pathogen-associated molecular patterns (PAMPs). In Arabidopsis thaliana, the leucine-rich repeat receptor kinases flagellin-sensitive 2 (FLS2) (ref. 2) and elongation factor Tu receptor (EFR) (ref. 3) act as pattern-recognition receptors for the bacterial PAMPs flagellin and elongation factor Tu (EF-Tu) (ref. 5) and contribute to resistance against bacterial pathogens. Little is known about the molecular mechanisms that link receptor activation to intracellular signal transduction. Here we show that BAK1 (BRI1-associated receptor kinase 1), a leucine-rich repeat receptor-like kinase that has been reported to regulate the brassinosteroid receptor BRI1 (refs 6,7), is involved in signalling by FLS2 and EFR. Plants carrying bak1 mutations show normal flagellin binding but abnormal early and late flagellin-triggered responses, indicating that BAK1 acts as a positive regulator in signalling. The bak1-mutant plants also show a reduction in early, but not late, EF-Tu-triggered responses. The decrease in responses to PAMPs is not due to reduced sensitivity to brassinosteroids. We provide evidence that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin. Thus, BAK1 is not only associated with developmental regulation through the plant hormone receptor BRI1 (refs 6,7), but also has a functional role in PRR-dependent signalling, which initiates innate immunity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                26 June 2018
                2018
                : 9
                : 867
                Affiliations
                [1] 1UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin , Belfield, Ireland
                [2] 2Crop Science Department, Oak Park Crops Research Centre , Teagasc, Carlow, Ireland
                Author notes

                Edited by: Nora A. Foroud, Agriculture and Agri-Food Canada, Canada

                Reviewed by: Shawn Clark, National Research Council Canada (NRC-CNRC), Canada; Donald Max Gardiner, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia

                *Correspondence: Fiona M. Doohan, fiona.doohan@ 123456ucd.ie

                This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2018.00867
                6029142
                29997638
                43acd047-9152-4e93-be39-f88d459f58c3
                Copyright © 2018 Thapa, Gunupuru, Hehir, Kahla, Mullins and Doohan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 November 2017
                : 04 June 2018
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 118, Pages: 15, Words: 0
                Funding
                Funded by: Department of Agriculture, Food and the Marine 10.13039/501100001584
                Award ID: 11/S/103
                Funded by: Science Foundation Ireland 10.13039/501100001602
                Award ID: 10/IN.1/B3028
                Award ID: 14IA2508
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                leucine rich repeat receptor like kinase (lrr-rlk),triticum aestivum,fusarium,pathogen-associated molecular pattern (pamp),virus-induced gene silencing (vigs)

                Comments

                Comment on this article