23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Is hatchery stocking a help or harm?

      ,
      Aquaculture
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Depletion, degradation, and recovery potential of estuaries and coastal seas.

          Estuarine and coastal transformation is as old as civilization yet has dramatically accelerated over the past 150 to 300 years. Reconstructed time lines, causes, and consequences of change in 12 once diverse and productive estuaries and coastal seas worldwide show similar patterns: Human impacts have depleted >90% of formerly important species, destroyed >65% of seagrass and wetland habitat, degraded water quality, and accelerated species invasions. Twentieth-century conservation efforts achieved partial recovery of upper trophic levels but have so far failed to restore former ecosystem structure and function. Our results provide detailed historical baselines and quantitative targets for ecosystem-based management and marine conservation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild.

            Captive breeding is used to supplement populations of many species that are declining in the wild. The suitability of and long-term species survival from such programs remain largely untested, however. We measured lifetime reproductive success of the first two generations of steelhead trout that were reared in captivity and bred in the wild after they were released. By reconstructing a three-generation pedigree with microsatellite markers, we show that genetic effects of domestication reduce subsequent reproductive capabilities by approximately 40% per captive-reared generation when fish are moved to natural environments. These results suggest that even a few generations of domestication may have negative effects on natural reproduction in the wild and that the repeated use of captive-reared parents to supplement wild populations should be carefully reconsidered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fitness of hatchery-reared salmonids in the wild

              Accumulating data indicate that hatchery fish have lower fitness in natural environments than wild fish. This fitness decline can occur very quickly, sometimes following only one or two generations of captive rearing. In this review, we summarize existing data on the fitness of hatchery fish in the wild, and we investigate the conditions under which rapid fitness declines can occur. The summary of studies to date suggests: nonlocal hatchery stocks consistently reproduce very poorly in the wild; hatchery stocks that use wild, local fish for captive propagation generally perform better than nonlocal stocks, but often worse than wild fish. However, the data above are from a limited number of studies and species, and more studies are needed before one can generalize further. We used a simple quantitative genetic model to evaluate whether domestication selection is a sufficient explanation for some observed rapid fitness declines. We show that if selection acts on a single trait, such rapid effects can be explained only when selection is very strong, both in captivity and in the wild, and when the heritability of the trait under selection is high. If selection acts on multiple traits throughout the life cycle, rapid fitness declines are plausible.
                Bookmark

                Author and article information

                Journal
                Aquaculture
                Aquaculture
                Elsevier BV
                00448486
                January 2010
                January 2010
                : 308
                :
                : S2-S11
                Article
                10.1016/j.aquaculture.2010.05.036
                43aef6b1-0ac9-4590-9229-6c9e5967228d
                © 2010

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article